РАССЕЯНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ
В МЕТАЛЛАХ И ИОННЫХ КРИСТАЛЛАХ
ПО РЕНТГЕНОГРАФИЧЕСКИМ
ДАННЫМ
Содержание
Введение
Глава 1. Свойства исследуемых объектов и методы измерения электронной плотности по упругому рассеянию
1.1 Свойства исследуемых объектов
1.2 Методы измерения электронной плотности по упругому рассеянию
Глава 2. Неупругое рассеяние рентгеновских лучей веществом
2.1 Импульсная аппроксимация
2.2Экспериментальные методы исследования комптоновского рассеяния
2.3 Атомно - рассеивающий фактор и распределение радиальной электронной плотности в литии по комптоновским профилям
Глава 3. Методика измерений и обработки результатов
3.1. Подготовка образцов и методика измерений
3.2 Методика обработки дифракционных максимумов
3.3 Анализ результатов эксперимента
Заключение
Список используемой литературы
Введение
Экспериментальные исследования распределения электронных плотностей в кристаллах по данным рентгено - и нейтронографических измерений в последние годы значительно расширились. Этому способствует, во-первых, то обстоятельство, что получаемые карты распределения электронных плотностей в кристаллах дают возможность не только качественно судить о характере связи, но и количественно определять ряд физических свойств кристаллов. Метод определения физических свойств кристаллов по рентгенографическим данным распределения электронных плотностей в кристаллах, предположенный и развитый институтом физики твердого тела и полупроводников Академии наук Беларуси, находит широкое признание и используется во многих исследовательских центрах. Во-вторых, успешному развитию исследований природы химической связи рентгено - и нейронографическими методами в последнее время способствует значительное повышение точности абсолютных измерений интенсивности дифракционных рефлексов и определение кривых атомнорассеивающих факторов.
Очевидно, что функция распределения электронной плотности в кристалле – не только важнейшая характеристика особенности химической связи, но и непосредственно количественно связана с волновой функцией, являясь квадратом ее модуля. Поэтому определение распределения электронной плотности различными способами – по данным рассеяния рентгеновских лучей и электронов, методами ядерного гамма-резонанса, по комптоновским профилям и другими методами – важнейшая задача экспериментального исследования химической связи и представляет собой экспериментальную основу квантовой химии.
Проблема восстановления волновой функции, достаточно точно описывающей действительное распределение электронов в кристалле и, следовательно, особенности межатомной химической связи, до сих пор не может считаться полностью решенной. Наиболее прямые методы нахождения функции распределения электронной плотности в кристаллах по рассеянию рентгеновских лучей, электронов и нейронов приводят к достаточно надежным результатам лишь для кристаллов, для которых первые бреговские рефлексы лежат при сравнительно малых значениях вектора обратной решетки. Для кристаллов этого типа интенсивности первых рефлексов в значительной мере определяются самой внешней частью электронных орбиталей. Однако к данному типу относится скорее меньшинство, чем большинство кристаллов.
Для восстановления и уточнения волновых функций, характеризующих истинное распределение внешней части электронов, в ряде случаев удобно и целесообразно использование косвенных методов, непосредственно характеризующих не функции распределения внешних электронов, а функции распределения момента количества движения, энергии ионизации, плотности состояния по энергиям.
В первую очередь к числу подобных методов следует отнести изучение комптоновских профилей. Открытый Комптоном эффект, как показал ряд исследований, в особенности работы Вейсса и его сотрудников, - весьма удобный и мощный метод изучения проблем химической связи. Существенными факторами, ограничивающими возможности исследования комптоновских профилей для изучения особенностей межатомной химической связи, являются чрезвычайно малая их интенсивность, сложность исследования элементов с большим порядковым номером, большая поглощающая способность и др.
Использование данных измерений комптоновских профилей позволяет найти функцию распределения плотности моментов и электронной плотности кристаллов во внешних частях орбиталей атомов. Измерения рассеяния рентгеновских лучей, электронов и нейронов дают возможность определять распределение электронной плотности во внешних и в особенности в средних частях электронных оболочек.
Объектами исследования в настоящей работе являлись литий с ОЦК и
алюминий с ГЦК кубическими решетками, а также бинарное соединение фторид лития со структурой хлорида натрия, предметом – интегральная интенсивность брегговских рефлексов, структурный множитель, функция атомного рассеяния, карты распределения электронной плотности для каждого объекта исследования при комнатной температуре.
Цель исследования – выяснить характер распределения электронной плотности в металлических и ионных кристаллах. Определить зависимость распределения электронной плотности от типа кристаллической решетки с металлической связью.
В соответствии с намеченной целью были поставлены следующие задачи исследования:
1. Систематизировать опыт исследований распределения электронной плотности и потенциала.
2. Рассмотреть методику определения интегральной интенсивности рефлекса исследуемых образцов.
3. Вычислить значения структурного и атомно-рассеивающего факторов лития, алюминия и фторида лития.
4. На основе экспериментальных данных построить карты распределения электронных плотностей лития, алюминия и фторида лития.
Новизна исследования:
Существующая модель металла, где ионы погружены в электронную «жидкость», не отражает химическую связь атомов друг с другом. В модели ионных кристаллов недостаточно ясно распределение электронной плотности между ионами.
В связи с этим исследование распределения электронной плотности рентгенографическим методом является актуальной проблемой, требующей ее решения.
Объем и структура диссертации:
Работа состоит из введения, литературного обзора, экспериментальной части, заключения, списка литературы и приложения. Работа изложена на 61 странице, включает в себя 32 рисунка, 8 таблиц, список литературы содержит 37 источников.
Положения, выносимые на защиту :
- Методика и результаты расчета электронной плотности в металлах с различными типами решетки.
- Методика и результаты разделения атомно – рассеивающих факторов разных сортов атомов в бинарном соединении.
- Построение карт электронной плотности и их анализ.
Глава 1. Свойства исследуемых объектов и методы измерения электронной плотности по упругому рассеянию
1.1 Свойства исследуемых объектов
Литий. При обычной температуре литий кристаллизуется в кубической объемно-центрированной решетке, а = 3,5098 Å, в элементарной ячейке которой 2 атома с координатами (0,0,0) и (1/2,1/2,1/2). Литий - самый легкий металл; плотность 0,534 г/см3 (20°С); tпл 180,5°С, tкип. 1317°С. Удельная теплоемкость (при 0-100°С) 3,31·103 Дж/(кг·К), термический коэффициент линейного расширения 5,6·10-5. Удельное электрическое сопротивление (20°С) 9,29·10-4 Ом·м (9,29 мкОм·см); температурный коэффициент электрического сопротивления (0-100°С) 4,50·10-3. Металл весьма пластичен и вязок, хорошо обрабатывается прессованием и прокаткой, легко протягивается в проволоку. Твердость по Моосу 0,6 (тверже, чем Na и К), легко режется ножом. Модуль упругости 5 Гн/м2 (500 кгс/мм2), предел прочности при растяжении 116 Мн/м2 (11,8 кгс/мм2), относительное удлинение 50-70% . Пары лития окрашивают пламя в карминово-красный цвет. [1]
Литий является модельным образцом, поскольку он имеет всего лишь 3 электрона с электронной конфигурацией 1s22s1. Это обстоятельство позволяет достаточно просто найти волновую функцию, описывающую состояние атома.
Литий (Li) - щелочной металл. В компактном состоянии серебристо-белого цвета. Получил название от греческого lithos (камень). Открыт шведским химиком А. Арфведсоном в 1817 г. в минерале петалите (алюмосиликата лития). Металлический литий впервые выделен английским ученым Дэви в 1818 г. электролизом оксида лития. В 1885 г. в значительных количествах металлический литий получен независимо друг от друга Бунзеном (Германия) и Матиссеном (Англия) путем электролиза (электролитом служил хлорид лития). Содержание лития в земной коре 0,0065 % (по массе). В свободном состоянии литий не встречается из-за большой химической активности.
В промышленности металлический литий получают путем электролиза расплавленного хлорида лития или смеси расплавленных хлорида лития и хлорида калия с применением графитированного анода и стального катода. Литий высокой чистоты (99,95%), почти свободный от примесей щелочных и щелочноземельных металлов, получают электролизом насыщенного раствора LiCl в пиридине, разложением соединения NH3Li в вакууме при 50-60 °С и восстановлением окиси лития алюминием в вакууме (примерно 10-1 Па) при 950-1000°С.
Физические свойства
Атомный номер 3, атомная масса 6,941 а. е. м., атомный объем
м3/моль. Потенциалы ионизации атомов (эВ): 5,39; 75,61; 122,42. Из щелочных металлов Li обладает наименьшим атомным радиусом - 0,157 нм, а следовательно, наибольшим ионизационным потенциалом = 5,39 эВ, поэтому литий химически менее активен по сравнению с другими щелочными металлами. Ионный радиус Li+ равен 0,068 нм. Благодаря малому атомному радиусу литий обладает наиболее прочной кристаллической решеткой по сравнению с остальными щелочными металлами. Это обусловливает наиболее высокие температуры плавления и кипения лития по сравнению с его аналогами. При нормальной температуре литий имеет ОЦК решетку, период решетки 0,35023 нм, координационное число 8, межатомное расстояние 0,30331 нм. Ниже - 195 °С литий кристаллизуется в г. п. у. решетку с а = 0,3111 им и с = 0,5093 нм. Энергия кристаллической решетки 155,2 мкДж/кмоль. [2]