Смекни!
smekni.com

Световод: уравнение, типы волн в световодах. Критические длины и частоты (стр. 1 из 3)

Световод: уравнение, типы волн в световодах. Критические длины и частоты


1. Уравнение передачи по световоду

Рассмотрим волоконный световод без потерь двухслойной конструкции, приведенный на рис. 1

bn2 n1 aРис. 1

Для описания поведения электромагнитного поля в сердечнике (0<r<a) и в оболочке (a<r<b) необходимо использовать различные функции. Исходя из физической сущности процессов, функции внутри сердечника при r=0 должны быть конечными, а в оболочке описывать спадающее поле.

Для определения основных параметров световодов (критической частоты, волнового числа, скорости передачи и др.) воспользуемся основными уравнениями электродинамики – уравнениями Максвелла, которые для диэлектрических волноводов имеют вид:

(1)

Уравнения Максвелла справедливы для любой системы координат. Для направляющих систем эти уравнения наиболее часто применяются в цилиндрической системе координат, ось Z которой совместим с оптической осью световода:

(2)

Для решения инженерных задач электродинамики необходимо знать продольные составляющие полей Еz и Hz. Их можно получить следующим образом. Преобразуем первое из уравнений Максвелла (1) к виду

.

Тогда, используя соотношение

, а также учитывая, что divH=0, получим

,

где

- волновое число световода.

Поступая аналогично со вторым уравнением Максвелла (2), получим

.

Отсюда следует, что продольные электромагнитные составляющие векторов Ez и Hz удовлетворяют уравнениям

Где

– оператор Лапласа.

,

Тогда для продольных составляющих Ez и Hz в цилиндричееской системе координат получим дифференциальные уравнения второго порядка:

(3)

Допустим, что напряженность электромагнитного поля в направлении оси Z меняется по экспоненциальному закону, т.е.

, где А – любая составляющая векторов Е или Н;
j
- коэффициент распространения. Тогда первая и вторая производные определятся

.

Для составляющей Еz

.

Подставляя полученное значениe в уравнения (3), получим

Введем обозначение

– поперечное волновое число световода. Тогда для сердечника световода имеем

(4)

где

(без учета затухания) – поперечное волновое число сердечника; k1 – волновое число сердечника с коэффициентом преломления n1,
.

Решение уравнений (4) для сердечника следует выразить через цилиндрические функции первого рода – функции Бесселя, имеющие конечные значения при r=0. Поэтому можно написать

(5)

где Аn и Вn – постоянные интегрирования.


Воспользовавшись уравнениями (2), рассмотрим связь между поперечными и продольными компонентами поля. В частности, для составляющей Еr имеем

Возьмем производную от второго выражения по

Учитывая, что

, а
, то

Тогда

или

Подставим данное выражение в уравнение для Еr

или

.

Окончательно получим

.

Аналогично можно установить связь между продольными и другими поперечными компонентами поля

Воспользовавшись уравнениями (5) возьмем соответствующие производные

Тогда выражения для поперечных составляющих электрического и магнитного полей в сердечнике световода, полагая, что

, имеют вид (множитель
не пишем):

(6)

Для оболочки имеем аналогичную систему уравнений:

где

(без учета затухания) – поперечное волновое число оболочки световода; k2 – волновое число оболочки с коэффициентом преломления n2,
.

Для решения данных уравнений, исходя из условия, что при

поле должно стремиться к нулю, следует использовать цилиндрические функции третьего рода – функции Ганкеля:

где Сn, Dn – постоянные интегрирования.

Тогда для поперечных составляющих поля в оболочке можно написать следующие выражения:

(7)

Постоянные интегрирования Аn, Вn, Сn, Dn могут быть определены на основании граничных условий. Используем условия равенства тангенциальных составляющих напряженностей электрических и магнитных полей на поверхности раздела сердечник-оболочка (при r=а):

Найдя постоянные интегрирования и подставив их в уравнения, после соответствующих преобразований получим следующее трансцендентное уравнение:

(8)

Полученные уравнения дают возможность определить неизвестные постоянные и найти структуру поля в сердечнике и оболочке волоконного световода. В общем случае уравнения имеют ряд решений, каждому из которых соответствует определенная структура поля, называемая типом волны или модой.

световод уравнение интегрирование волна

2. Типы волн в световодах

В сетоводах могут существовать два типа волн: симметричные E0m, H0m несимметричные дипольные EHnm, HEnm. В индексе n – число изменений поля по диаметру; m – число изменений поля по периметру. Симметричные волны электрические Е0m и магнитные H0m имеют круговую симметрию (n=0).

Раздельное распространение по световоду несимметричных волн типа невозможно. В световоде они существуют только совместно, т.е. имеются продольные составляющие Е и Н. Эти волны называются смешанными, дипольными и обозначаются через HЕnm, если поле в поперечном сечении напоминает поле Н, или EНnm, если поле в поперечном сечении ближе к волнам Е.

Из всей номенклатуры смешанных волн в оптических кабелях наибольшее применение получила волна типа НЕ11 (или ЕН10). На этой волне работают одномодовые световоды, имеющие наибольшую пропускную способность

Представляет интерес сопоставить указанную классификацию электромагнитных волн с лучевой классификацией.

Как уже отмечалось, по волоконным световодам возможна передача двух видов лучей: меридиональных и косых. Меридиональные лучи расположены в плоскости, проходящей через ось волоконного световода. Косые лучи не пересекают ось световода.