Содержание
Введение
1. Теория перколяции
2. Область применения теории перколяции
2.1 Процессы гелеобразования
2.2 Применение теории перколяции для описания магнитных фазовых переходов
2.3 Применение теории перколяции к исследованию газочувствительных датчиков с перколяционной структурой
Заключение
Список литературы
Теории перколяции уже более пятидесяти лет. Ежегодно на западе публикуются сотни статей, посвященных как теоретическим вопросам перколяции, так и ее приложениям.
Теория перколяции имеет дело с образованием связанных объектов в неупорядоченных средах. С точки зрения математика, теорию перколяции следует отнести к теории вероятности в графах. С точки зрения физика – перколяция – это геометрический фазовый переход. С точки зрения программиста – широчайшее поле для разработки новых алгоритмов. С точки зрения практика – простой, но мощный инструмент, позволяющий в едином подходе решать самые разнообразные жизненные задачи.
Данная работа будет посвящена основным положениям теории перколяции. Я рассмотрю теоретические основы перколяции, приведу примеры, поясняющие явление перколяции. Также будет рассмотрены основные приложения теории перколяции.
Теория перколяции (протекания) — теория, описывающая возникновение бесконечных связных структур (кластеров), состоящих из отдельных элементов. Представляя среду в виде дискретной решетки, сформулируем два простейших типа задач. Можно выборочно случайным образом красить (открывать) узлы решетки, считая долю крашенных узлов основным независимым параметром и полагая два крашенных узла принадлежащими одному кластеру, если их можно соединить непрерывной цепочкой соседних крашенных узлов.
Такие вопросы, как среднее число узлов в кластере, распределение кластеров по размерам, появление бесконечного кластера и доля входящих в него крашенных узлов, составляют содержание задачи узлов. Можно также выборочно красить (открывать) связи между соседними узлами и считать, что одному кластеру принадлежат узлы, соединенные цепочками открытых связей. Тогда те же самые вопросы о среднем числе узлов в кластере и т.д. составляют содержание задачи связей. Когда все узлы (или все связи) закрыты, решетка является моделью изолятора. Когда они все открыты и по проводящим связям через открытые узлы может идти ток, то решетка моделирует металл. При каком-то критическом значении
произойдет перколяционный переход, являющийся геометрическим аналогом перехода металл-изолятор.Теория перколяции важна именно в окрестности перехода. Вдали от перехода достаточно аппроксимации эффективной среды перколяционный переход аналогичен фазовому переходу второго рода.
Явление перколяции (или протекания среды) определяется:
- Средой, в которой наблюдается это явление;
- Внешним источником, который обеспечивает протекание в этой среде;
- Способом протекания среды, который зависит от внешнего источника.
В качестве простейшего примера можно рассмотреть модель протекания (например электрического пробоя) в двумерной квадратной решетке, состоящей из узлов, которые могут быть проводящими или непроводящими. В начальный момент времени все узлы сетки являются непроводящими. Со временем источник заменяет непроводящие узлы на проводящие, и число проводящих узлов постепенно растет. При этом узлы замещаются случайным образом, то есть выбор любого из узлов для замещения является равновероятным для всей поверхности решетки.
Перколяцией называют момент появления такого состояния решетки, при котором существует хотя бы один непрерывный путь через соседние проводящие узлы от одного до противоположного края. Очевидно, что с ростом числа проводящих узлов, этот момент наступит раньше, чем вся поверхность решетки будет состоять исключительно из проводящих узлов.
Обозначим непроводящее и проводящее состояние узлов нулями и единицами соответственно. В двумерном случае среде будет соответствовать бинарная матрица. Последовательность замены нулей матрицы на единицы будет соответствовать источнику протекания.
В начальный момент времени матрица состоит полностью из непроводящих элементов:
перколяция гелеобразование газочувствительный кластер
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
При воздействии внешнего источника в матрице начинают добавляться проводящие элементы, однако поначалу их недостаточно для перколяции:
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 |
По мере увеличения числа проводящих узлов наступает такой критический момент, когда происходит перколяция, как показано ниже:
0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 |
0 | 0 | 1 | 1 |
Видно, что от левой к правой границе последней матрицы имеется цепочка элементов, которая обеспечивает протекание тока по проводящим узлам (единицам), непрерывно следующим друг за другом.
Перколяция может наблюдаться как в решетках, так и других геометрических конструкциях, в том числе непрерывных, состоящих из большого числа подобных элементов или непрерывных областей соответственно, которые могут находиться в одном из двух состояний. Соответствующие математические модели называются решеточными или континуальными.
В качестве примера перколяции в непрерывной среде может выступать прохождение жидкости через объемный пористый образец (например, воды через губку из пеноообразующего материала), в котором происходит постепенное надувание пузырьков до тех пор, пока их размеров не станет достаточно для просачивания жидкости от одного края образца до другого.
Индуктивно, понятие перколяции переносится на любые конструкции или материалы, которые называются перколяционной средой, для которой должен быть определен внешний источник протекания, способ протекания и элементы (фрагменты) которой могут находиться в разных состояниях, одно из которых (первичное) не удовлетворяет данному способу прохождения, а другое удовлетворяет. Способ протекания также подразумевает собой определенную последовательность возникновения элементов или изменение фрагментов среды в нужное для протекания состояние, которое обеспечивается источником. Источник же переводит постепенно элементы или фрагменты образца из одного состояния к другому, пока не наступит момент перколяции.
Порог протекания
Совокупность элементов, по которым происходит протекание, называется перколяционным кластером. Будучи по своей природе связным случайным графом, в зависимости от конкретной реализации он может иметь различную форму. Поэтому принято характеризовать его общий размер. Порогом протекания называется количество элементов перколяционного кластера, отнесенное к общему количеству элементов рассматриваемой среды.
Ввиду случайного характера переключений состояний элементов среды, в конечной системе чётко определенного порога (размера критического кластера) не существует, а имеется так называемая критическая область значений, в которую попадают значения порога перколяции, полученные в результате различных случайных реализаций. С увеличением размеров системы область сужается в точку.
2. Область применения теории перколяции
Применения теории перколяции обширны и разнообразны. Трудно назвать область, в которой бы не применялась теория перколяции. Образование гелей, прыжковая проводимость в полупроводниках, распространение эпидемий, ядерные реакции, образование галактических структур, свойства пористых материалов – вот далеко не полный перечень разнообразных приложений теории перколяции. Не представляется возможным дать сколь-нибудь полный обзор работ по приложениям теории перколяции, поэтому остановимся на некоторых из них.
Хотя именно процессы гелеобразования были первыми задачами, где был применен перколяционный подход, эта область еще далеко не исчерпана. Процесс гелеобразования заключается в слиянии молекул. Когда в системе возникают агрегаты, простирающиеся сквозь всю системы, говорят, что произошел переход золь-гель. Обычно считают, что система описывается тремя параметрами – концентрацией молекул, вероятностью образования связей между молекулами и температурой. Последний параметр влияет на вероятность образования связей. Таким образом, процесс гелеобразования можно рассматривать как смешанную задачу теории перколяции. Весьма примечательно, что этот подход используется и для описания магнитных систем. Имеется любопытное направление для развитие этого подхода. Задача гелеобразования белка альбумина имеет важное значение для медицинской диагностики.
Имеется любопытное направление для развитие этого подхода. Задача гелеобразования белка альбумина имеет важное значение для медицинской диагностики. Известно, что молекулы белка имеют вытянутую форму. При переходе раствора белка в фазу геля существенное влияние оказывает не только температура, но и наличие примесей в растворе или на поверхности самого белка. Таким образом, в смешенной задаче теории перколяции необходимо дополнительно учесть анизотропию молекул. В определенном смысле это сближает рассматриваемую задачу с задачей "иголок" и задачей Накамуры. Определение порога перколяции в смешанной задаче для анизотропных объектов – новая задача теории перколяции. Хотя для целей медицинской диагностики достаточно решить задачу для объектов одного типа, представляет интерес исследовать задачу для случаев объектов разной анизотропии и даже разной формы.