Смекни!
smekni.com

Физика. Электромагнитные явления (электродинамика) (стр. 1 из 8)

Южный филиал

НАЦОНАЛЬНОГО УНИВЕРСИТЕТА БИОТЕХНОЛОГИЙ И ПРИРОДОПОЛЬЗОВАНИЯ УКРАИНЫ

«Крымский агротехнологический университет»

Кафедра физики и математики

Физика. Электромагнитные явления (электродинамика)

Методические указания и задания для самостоятельной работы очного и заочного отделений инженерных специальностей

(модули 4 - 6 , часть 3)

Симферополь, 2009


Методические указания составили:

- доцент, к.т.н. Ю.Ф. Свириденко;

- старший преподаватель В.П. Кунцов.

Рецензенты:

- доцент, к.т.н. Завалий А.А.;

- доцент, к.т.н. Иваненко В.В.

Методические указания рассмотрены и одобрены на заседании кафедры физики и математики

«____» ____________ 2009г., протокол №____

Методические указания рассмотрены и утверждены на заседании методического совета механического факультета

«____» ____________ 2009г., протокол №____

Ответственный за выпуск: Ю.Ф. Свириденко


Содержание:

1. Тематический план

2. Литература

3. Учебный материал по разделу

4. Примеры решения задач

5. Контрольная работа

6. Таблицы вариантов


1.Тематический план

Содержание программы. Часть 2.

Лекции

№ Тем №Вопросов Название тем и их содержание
МОДУЛЬ 4. ЭЛЕКТРОМАГНЕТИЗМ 2 курс
4.1 МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ.
4.1.1 Магнитная индукция.
4.1.2 Закон Био-Савара-Лапласа и его применение.
4.1.3 Закон Ампера. Сила Лоренца.
4.2 ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ.
4.2.1 Закон электромагнитной индукции.
4.2.2 Самоиндукция и взаимоиндукция.
4.2.3 Эффект Холла.
4.3 МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА.
4.3.1 Магнитные моменты электронов и атомов
4.3.2 Парамагнетизм. Диамагнетизм.
4.3.3 Ферромагнетизм.
4.4 ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ.
4.4.1 Колебательный контур. Формула Томсона.
4.4.2 Затухающие и вынужденные колебания в контуре.
4.4.3 Электромагнитные волны.
МОДУЛЬ 5. ОПТИКА.
5.1 ПРИРОДА СВЕТА.
5.1.1 Волновая и квантовая природа света.
5.1.2 Геометрическая оптика.
5.1.3 Интерференция света.
5.2 ВОЛНОВАЯ ОПТИКА.
5.2.1 Дифракция света.
5.2.2 Поляризация света.
5.2.3 Дисперсия света. Поглощение света.
5.3 ТЕПЛОВОЕ ИЗЛУЧЕНИЕ.
5.3.1 Характеристики теплового излучения.
5.3.2 Законы теплового излучения.
5.3.3 Методы оптической пирометрии.
5.4 КВАНТОВАЯ ОПТИКА.
5.4.1 Фотоэлектрический эффект.
5.4.2 Эффект Комптона.
5.4.3 Давление света.
МОДУЛЬ 6. СТРОЕНИЕ ВЕЩЕСТВА.
6.1 ЭЛЕМЕНТЫ АТОМНОЙ ФИЗИКИ.
6.1.1 Строение атома водорода по Бору.
6.1.2 Спектральные закономерности.
6.1.3 Многоэлектронные атомы.
6.2 ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ.
6.2.1 Гипотеза де Бройля.
6.2.2 Соотношение неопределённостей Гейзенберга.
6.2.3 Уравнение Шредингера.
6.3 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА.
6.3.1 Строение ядра. Энергия связи атомного ядра.
6.3.2 Основной закон радиоактивного распада.
6.3.3 Ядерные реакции.

волновой квантовый тепловой излучение

ОРИЕНТИРОВОЧНАЯ ТЕМАТИКА ЛАБОРАТОРНЫХ ЗАНЯТИЙ.

№п/п № воп-росов Название тем и их содержание Примеч.
МОДУЛЬ 1. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ. 2 курс
1.1 1.1.1 Обработка результатов измерений
1.2 1.2.1 Изучение динамики поступательного движения.
1.3 1.3.1 Изучение динамики вращательного движения.
1.5 1.5.1 Изучение механических колебаний.
МОДУЛЬ 2.МОЛЕКУЛЯРНАЯ ФИЗИКА.
2.1 2.1.1 Измерение вязкости жидкости методом Стокса.
2.3 2.3.1 Измерение поверхностного натяжения жидкости.
МОДУЛЬ 3. ЭЛЕКТРИЧЕСТВО.
3.1 3.1.1 Изучение электростатического поля.
3.3 3.3.2 Измерение электрических величин.
3.3 3.3.3 Изучение зависимости сопротивления от темп-туры.
МОДУЛЬ 4. ЭЛЕКТРОМАГНЕТИЗМ. 2 курс
4.1 4.1.1 Измерение напряжённости магнитного поля Земли.
4.4 4.4.2 Изучение переменного тока.
МОДУЛЬ 5. ОПТИКА
5.2 5.2.1 Изучение дифракционной решётки.
5.2.2 Изучение поляризации света.
5.2.3 Изучение поглощения света.

ОРИЕНТИРОВОЧНАЯ ТЕМАТИКА ПРАКТИЧЕСКИХ ЗАНЯТИЙ

№п/п №тем Название тем и их содержание Примеч.
МОДУЛЬ 1. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ. 1 курс
1.1 1.1.1 Решение задач по кинематике.
1.2 1.2.2 Решение задач по динамике.
1.5 1.5.1 Механические колебания и волны.
МОДУЛЬ 2. МОЛ. ФИЗИКА И ТЕРМОДИНАМИКА.
2.1 2.1.1 Молекулярная физика.
2.2 2.2.1 Термодинамика.
МОДУЛЬ №. ЭЛЕКТРИЧЕСТВО.
3.1 3.1.1 Электростатическое поле.
3.3 3.3.1 Постоянный ток.
МОДУЛЬ 4. ЭЛЕКТРОМАГНЕТИЗМ. 2 курс
4.1 4.1.1 Магнитное поле.
4.2 4.2.1 Электромагнитная индукция.
МОДУЛЬ 5. ОПТИКА.
5.2 5.2.1 Волновая оптика.
5.4 5.4.1 Квантовая оптика.
МОДУЛЬ 6. СТРОЕНИЕ ВЕЩЕСТВА.
6.1 6.1.1 Строение атома водорода по Бору.
6.2 6.2.1 Радиоактивность.
6.3 6.3.1 Ядерные реакции
6.3.2 Методы дозиметрии

2. Литература

1. Т.И. Трофимова. Курс физики. М.: ВШ,1990.

2. И.В. Савельев. Курс физики. Наука, т.1,2,3.1989.

3. А.Г. Чертов. Задачник по физике. ВШ,1981.

4. А.А. Детлав, Б.М. Яворский Б.М. Курс физики.,1989.

5. П.П. Чолпан. Основы физики. К.: Вища шк.1995.

6.Я.И. Федишин. Лабораторный практикум по физике. Львов.2001.

7. Г.Д. Бурдун . Справочник по международной системе единиц. М.: 1977

8.Грабовский Р.И. Курс физики для сельскохозяйственных институтов. М., 1966


3. Учебный материал по разделу «Электромагнетизм»

Основные законы и формулы

Наименование величины или физический закон Формула
Связь между индукцией и напряженностью магнитного поля
Индукция магнитного поля в центре кругового тока с числом витков N
Индукция поля вблизи бесконечно длинного проводника с током
Индукция поля внутри соленоида с током
Закон Ампера
Сила взаимодействия двух прямых токов
Механический момент, действующий на рамку с током в магнитном поле
Магнитный момент контура с током
Магнитный момент рамки с током (короткой катушки)
Сила Лоренца
Магнитный поток
Потокосцепление в контуре с током
Закон Фарадея - Максвелла
Э. д. с. переменного тока при вращении рамки в магнитном поле
Э. д. с. самоиндукции
Индуктивность соленоида (тороида)

4. Примеры решения задач

Пример 1. По длинному прямому тонкому проводу течет ток силой I=20 А. Определить магнитную индукцию Bполя, создаваемого проводником в точке, удаленной от него на расстояние

=4 см.

Решение. Магнитное поле, создаваемое прямым бесконечно длинным проводником ничтожно малого сечения обладает осевой симметрией. Это значит, что абсолютная величина В магнитной индукции

в данной точке будет зависеть только от ее расстояния до проводника. Поэтому все точки на окружности радиуса
(рис. 1), лежащей в плоскости, перпендикулярной проводнику, будут иметь одинаковое значение магнитной индукции:

, (1)

где

- магнитная постоянная.