Смекни!
smekni.com

Электрификация крупных потребителей (стр. 2 из 5)

Найдем падение напряжения на участке (2 – 5) по формуле 2.1:

(2.11).

Произведем альтернативный расчет потерь электроэнергии при разбитии каждой фазы на две линии:

Найдем падение напряжения на участке (РЭС-1) по формуле 2.1 при использовании вместо одной линии А-240 двух линий А - 120:

(2.7).

Рассчитаем падение напряжения на участке (1-3) по формуле 2.1 при использовании вместо одной линии А-95 двух линий А-70:

(2.8).

Определим падение напряжения на участке (3 – 4) по формуле 2.1:


(2.9).

Найдем падение напряжения на участке (РЭС-2) по формуле 2.1 при использовании вместо одной линии А-500 двух линий А-240:

(2.10).

Найдем падение напряжения на участке (2 – 5) по формуле 2.1 при использовании вместо одной линии А-150 двух линий А-95:

(2.11).

Вывод: в данном разделе курсового проекта произведен предварительный расчет сечения проводников воздушных линий по условию допустимых потерь электроэнергии. Из расчетов видно, что выбранная конфигурация схемы электроснабжения при обоих вариантах исполнения проводов может обеспечить на всех ее участках выполнение требования, ограничивающего потери электроэнергии. Для удобства разместим результаты расчета в таблице:

Таблица № Результаты расчета проводников.

Обозначение участка Марка провода Максимальная токовая нагрузка, А. Длинна участков ВЛ, км.
РЭС-1 А - 240 690 29
1-3 А - 95 320 41
3-4 А-25 135 39
РЭС-2 А-500 980 59
2-5 А-150 440 47,5

2.2 РАСЧЕТ ПРОВОДОВ ВОЗДУШНЫХ ЛИНИЙ ПО УСЛОВИЮ ДОПУСТИМОГО НАГРЕВА

Соединения неизолированных (голых) проводов воздушных линий выполняются зажимами, не закрывающими герметически места сращивания (соединения). Происходит окисление контактных поверхностей: чем выше температура поверхности провода, тем интенсивней происходит окисление проводника. Сопротивление контакта увеличивается и температура его повышается еще более. При высокой температуре контакта произойдет разрушение провода в зажиме, что приведет к аварии на линии. ПУЭ устанавливают при длительном протекании тока предельно допустимую температуру голых проводов + 70 0С. Опыт эксплуатации показывает, что при этой температуре обеспечивается длительная надежная эксплуатация проводов.

При соединении проводов сваркой или другим способом, предотвращающим окисление контактных поверхностей, допускаемая температура неизолированных проводов могла быть повышена до + 90 – 95 0С. Более высокий длительный нагрев проводов привел бы к уменьшению их механической прочности. Следует обратить внимание, что при температуре провода 90– 95 0С не окисление контактных поверхностей должно быть обеспечено не только на соединительных зажимах, но и при присоединении ответвлений от линий, присоединенных к аппаратам.

Тепловой режим провода определяется уравнением теплового равновесия:

(2.12),

где F – площадь поверхности провода;

с – коэффициент теплоотдачи (количество теплоты, отводимой в 1 сек с 1 м 2 поверхности при разности температур 1 0С поверхности провода и окружающей среды);

Q - температура провода, 0С;

Q0 - температура окружающей среды, принимаем + 40 0С .

Определим коэффициент теплоотдачи для отрезка сети (РЭС – 1) при использовании провода А - 240:

(2.13)

где L – длина воздушной линии, км;

RL- сопротивление выбранного провода на единицу длины, Ом/км (3. стр 120);

I – ток, проходящий по линии, А;

r - радиус выбранного провода, м.

Рассчитаем ток, проходящий по выбранному ранее проводу

А-240 (РЭС – 1) при нагреве его до 70 0С :

(A) (2.14),

где R70 – сопротивление марки выбранного провода на единицу длины, при нагреве материала проводника до 70 0С , Ом/км.

R70=R20 (1+(70-20) k)=0.131·(1+50 4.31 10-3) = 0.159 Ом/км (2.15)

где R20 - сопротивление марки выбранного провода на единицу длины, при нагреве материала проводника до 20 0С (3. стр 120), Ом/км;

k – коэффициент изменения сопротивления проводника от его температуры, для алюминия равен 4.31*10-3 1/K.

По полученному значению тока видно, что для нагрева проводника выбранной марки до 70 0С необходимо пропустить через него ток величиной в 809 А, что значительно больше существующей нагрузки на данный участок, марка провода А –240 на участке РЭС-1 в корректировке не нуждается и отвечает условию допустимого нагрева.

Определим коэффициент теплоотдачи для отрезка сети (1-3) при использовании провода А-95:

(2.13)

Рассчитаем ток, проходящий по выбранному проводу

А-95 (1-3) при нагреве его до 70 0С :

(A) (2.14),

R70=R20 (1+(70-20) k)=0.33·(1+50 4.31 10-3) = 0.40 Ом/км (2.15)

По полученному значению тока видно, что марка провода

А – 95 на участке 1 - 3 в корректировке не нуждается и отвечает условию допустимого нагрева.

Определим коэффициент теплоотдачи для отрезка сети (3-4) при использовании провода А-25:

(2.13)

Рассчитаем ток, проходящий по выбранному проводу

А - 25 (1-3) при нагреве его до 70 0С :


(A) (2.14),

R70=R20 (1+(70-20) k)=1.27·(1+50 4.31 10-3) = 1.54 Ом/км (2.15)

По полученному значению тока видно, что марка провода

А – 25 на участке 1 - 3 в корректировке не нуждается и отвечает условию допустимого нагрева.

Определим коэффициент теплоотдачи для отрезка сети (РЭС - 2) при использовании провода А-500:

(2.13)

Рассчитаем ток, проходящий по выбранному проводу

А-500 (РЭС -2) при нагреве его до 70 0С :

энергоснабжение ток линия сеть

(A) (2.14),

R70=R20 (1+(70-20) k)=0.066·(1+50 4.31 10-3) = 0.0706 Ом/км (2.15)

По полученному значению тока видно, что марка провода

А – 500 на участке РЭС - 2 в корректировке не нуждается и отвечает условию допустимого нагрева.

Определим коэффициент теплоотдачи для отрезка сети (2-5) при использовании провода А-150:

(2.13)

Рассчитаем ток, проходящий по выбранному проводу

А-150 (2-5) при нагреве его до 70 0С :

(A) (2.14),

R70=R20 (1+(70-20) k)=0.21·(1+50 4.31 10-3) = 0.255 Ом/км (2.15)

По полученному значению тока видно, что марка провода

А - 150 на участке 2-5 в корректировке не нуждается и отвечает условию допустимого нагрева.

Вывод: в данном разделе курсового проекта произведен расчет выбранных ранее типов проводов по условию допустимого нагрева, все проводники на всех участках сети энергоснабжения отвечают предъявленным в этом разделе условиям.


3. МЕХАНИЧЕСКИЙ РАСЧЕТ ПРОВОДОВ ПРИ НОРМАЛЬНЫХ РЕЖИМАХ РАБОТЫ ЛИНИЙ

Воздушные линии по ПУЭ делятся на три класса. К конструкциям класса I, питающим обширные и мощные нагрузки, предъявляются наиболее строгие требования, обеспечивающие высокую надежность электроснабжения. Проектируемая сеть энергоснабжения имеет номинальное напряжение сети выше 35 кВ, а, следовательно, в независимости от категории потребителей электроэнергии относится к I классу воздушных линий.

Провода и тросы подвешиваются на линиях с определенным коэффициентом запаса прочности. По ПУЭ номинальный коэффициент запаса прочности определяется отношением:

n = δвр/[δ] (3.1),

где δвр – временное сопротивление проволки, из которой изготовлен провод или трос, на растяжение, кГ/мм2;

[δ] – допускаемое натяжение материала провода или троса, кГ/мм2.

Многопроволочные провода и тросы линий классов I и II, проходящие по ненаселенным местностям, расчитываются с номинальным коэффициентом прочности 2, а однопроволочные –2,5. В населенных местностях и при пересечении инженерых сооружений (дорог, линий связи и т.д.) требуемый коэффициент запаса прочности проводов и тросов линий классов I и II зависит от их материала и сечения.

Для сталеалюминиевых проводов допускается повышение напряжения на 20% сверх найденного по номинальному коэффициенту запаса прочности.

Тяжение по проводу при среднегодовой температуре не должно превышать 25% временного сопротивления провода.

Увеличение запаса прочности для медных, алюминиевых и стальных проводов небольших и средних сечений на линиях в населенных местностях и для однопроволочных проводов на всех линиях преследует цель повысить надежность работы линии с такими проводами и тросами.

Расчет конструкций воздушных линий рекомендуется производить для следующих сочетаний климатических условий:

I. Нормальные режимы работы линий.

1. Высшая расчетная температура ύвс ; ветра и гололеда нет. Расчетная температура провода принимается равной высшей температуре воздуха местности, в которой сооружается линия. Для многих районов России ύвс = + 400С.

2. Низшая расчетная температура принимается ύнз , принимаемая равной низшей температуре воздуха. Ветра и гололеда нет. Для средней полосы России обычно принимают ύнз= - 400С.