Смекни!
smekni.com

Океан как источник энергии (стр. 4 из 5)

Чтобы понять, как работает энергия прилива, нужно немного знать о его механизмах. Обычно, но не всегда, дважды в день море достигает высокой точки берега (происходит прилив) и нижней точки (отлив). Приливы и отливы происходят регулярно в одно и то же время. Обуславливает приливы сила гравитации. Приливное течение вызывают гравитационные силы: Луна, Солнце, а также вращение Земли. Погода также немного влияет на приливы: мощный шторм может вызывать волны выше обычных.

Простая приливная электростанция использует преимущества ландшафта залива или устья реки. Происходит это там, где движется прилив, в области, окруженной землей с одной или двух-трех сторон. В устье реки или заливе ставится приливное заграждение. Заграждение делит область прилива на верхний и нижний бассейны. В заграждении установлены турбины. Когда разница в уровне воды по сторонам заграждения достаточна, шлюзы открывают, чтобы протекающая вода вращала турбины. Турбины вращаются по мере прохождения воды из одного резервуара в другой, скорость зависит от объема прилива. Движение турбины вращает генератор, вырабатывающий электричество.

Самая старая приливная электростанция Ля Ранс находится в Бретани (Франция). Эта станция работала с 1966 года, она генерирует 240 мегаватт электричества. Королевская станция Аннаполис в Новой Шотландии (Канада), запущенная в 1984 году, вырабатывает 20 мегаватт электричества. Приливные электростанции строятся в Баренцевом море (Россия), в восьми местах Китая, Индии и Уэльса.

Энергия прилива кажется простой, но что если бы во многих заливах и устьях были бы электростанции? Строительство электростанции стоит дорого, поэтому она должна генерировать достаточно электричества, чтобы окупить эти инвестиции. Инвестиции окупаются, когда разница между приливом и отливом составляет как минимум 5 метров. Приливы с меньшей разницей не генерируют достаточно электричества, чтобы окупить строительство электростанции. Приливы такой силы наблюдаются всего в 40 местах мира.

Приливной забор работает по принципу заграждения. Однако вместо однородной дамбы забор состоит из серии турбин, установленных в открытый забор, больше похожий на шлюз в воде. Турбины рабоатют на вертикальной оси. Одно из преимуществ забора в том, что он не полностью блокирует залив. Приливной забор может быть установлен в месте течения.

Приливное течение может генерировать столько же энергии, сколько и ветер на большой скорости. Происходит это, потому что плотность воды больше плотности воздуха, поэтому она несет больше энергии. Приливной забор нуждается в скорости течения 5-8 узлов (6-9 м/час), чтобы выработать достаточно электричества для экономической выгодности проекта. Приливной забор менее выгоден в установке, в сравнении с заграждением. Проект с приливным забором работает в Сан-Бернардино-Стрейт на Филиппинах.

Приливные турбины очень похожи на ветряные и могут быть установлены везде, где есть приливы достаточной силы. Лопасти похожи на гигантский пропеллер. Лезвия турбины не насколько велики, как ветряные: часто 15 метров в диаметре (лопасти турбин достигают 60 метров). Турбины прикреплены ко дну на глубине 20-30 метров, где есть течение в 3,6-4,9 морских узлов (4 - 5,5 м/час). На этой скорости приливная турбина вырабатывает гораздо больше электроэнергии, нежели ветряная. Во многих местах есть станции тестирования приливных турбин, одно из таких мест Ист Ривер в Нью-Йорке.

Проблемы приливной энергии

Энергия прилива не производит выбросов. Однако влияние дамб и турбин на жизнь морских обитателей неизвестно. Мы знаем, что дамбы и заграждения влияют на миграцию, а также движение осадочных пород в устье или заливе. Поэтому дамба должна влиять на локальную экосистему. Приливные заборы решают часть этих проблем. Открытая структура позволяет двигаться илу, песку и мелким морским обитателям. Однако крупные рыбы и морские млекопитающие не смогут проходить сквозь турбины без повреждений, которые могут повлиять на миграцию. Отдельностоящие турбины меньше всего влияют на экосистему. Приливные заборы еще предстоит усовершенствовать, хотя и их влияние остается малоизученным.

Сейчас большой проблемой на пути широкого использования энергии прилива является цена. Приливные электростанции недороги в эксплуатации, особенно учитывая то, что морская вода как топливо - бесплатная. Однако установка этих станций стоит дорого, стоимость создания самих турбин ниже, чем цена возведения заграждений. Стоимость строительства делает энергию, генерируемую электростанциями сейчас более дорогой, чем энергию ископаемого топлива.

Энергия волн

Очень просто увидеть энергию волн, бьющихся о берег. Они могут разбиваться в белую соленую пену, ровно лежающую на берегу - волны наделены жестокой силой. Однако энергия волн не просто сокрушительна. Вдалеке от берега движение океана прячет еще более мощную энергию. Постоянное соударение волн никогда не прекращается. Исследователи энергии волн рассматривают как использование энергии разбивающихся волн на наземных станциях, так и постоянное движение волн на морских устройствах.

Сейчас испытывается множество различных видов прибрежных электростанций. Один из способов уловить новую энергию - осциляционная водяная колонна. В полой, частично погруженной колонне из стали или бетона есть отверстие под водой. Внутренняя часть колонны содержит воздух над столбом воды. Волны, попадая в сооружение, вызывают подъем и уменьшение уровня воды. Движение воды то сжимает, то разжимает воздух в конструкции. Сжитый воздух образуется, когда вода входит в колонну, и передается турбине, прикрепленной к генератору. Волны заставляют воздух выходить через турбины и возвращаться обратно, когда давление падает. В колонне воды используется турбина Уэллса, уникальные лопасти которой позволяют ей вращаться вне зависимости от того, в каком направлении движется воздух. Прототип такой электростанции по построен на побережье Шотландии. Она генерирует около 500 киловатт электричества.

В системе клиновидных каналов или ТАПЧАН (англ. аббревиатура) для получения энергии волн используется морская вода. На возвышении у берега строится резервуар, находящийся чуть выше уровня моря. В резервуар ведет конический канал: он шире со стороны океана и уже у резервуара. Волны попадают в широкую часть канала и увеличиваются в высоте по мере сужения. В некоторой точке вода через канал попадает в резервуар. По трубе вода возвращается в океан. В трубе вода проходит через турбину генератора. Прототип такой электростанции работает в Норвегии с 1985 года, другие проекты все еще находятся на этапе конструирования.

Маятниковое водяное устроство работает по принципу своего названия. На берегу устанавливается большая прямоугольная коробка. Один конец ящика открыт для воды. На открытом конце есть заслонка, которая в такт волнам раскачивается вперед-назад, как маятник. Движение вперед-назад приводит в действие гидравлический насос, прикрепленный к генератору. Маятниковые устройства находятся сейчас на стадии тестирования.

Офшорные системы обычно устанавливаются на глубине 40 метров и более. На станции Сальтер дак используется сила волн для движения маятника вперед-назад. Маятник подключен к генератору. Серия Даков может быть установлена в ряд, чтобы получить как можно больше энергии.

Шланговый насос с помощью шланга, прикрепленного к поплавку, получает энергию волн. Шланг растягивается и сжимается в такт движения волн, накачивая воду внутрь себя. Вода проходит через односторонний клапан внизу шланга и попадает в турбину генератора. Как и Сальтер даки, шланговые насосы можно устанавливать рядами.

На пелями, названной в честь морской змеи, установлена сегментированная плавающая труба, которая движется вместе с волнами. В соединениях находятся гидравлические моторы. Движение воды активирует моторы и вырабатывается электричество. Электричество передается на берег. Прототип пелями тестируется в Шотландии.

Проблемы приливной энергии

Сложно выбрать место для строительства волновой электростанции Как и в случае с ветром, сила волн меняется: во время шторма они увеличиваются, а в спокойную погоду - уменьшаются. Для нормальной работы волновой электростанции необходимы относительно стабильные волны. Есть множество регионов, у берегов которых наблюдается волнение, - западные берега Шотландии, север Канады, юг Африки и Австралии; часть Гавайский островов и северо-восточные и северо-западные берега США.

Важен и вид местности. Вряд ли местным жителям понравится огромная волновая электростанция вместо живописного вида. Влияние на окружающую среду так же поднимает свои вопросы. Строители электростанции не хотят существунно поднимать существующие седиментарные слои, потому что последствия могут быть очень масштабными. Кроме того, оборудование должно выдерживать суровые погодные условия.

Самой большой проблемой для волновой энергии является ее стоимость. Волновые электростанции дорого строить. Несмотря на то, что их топливо бесплатное, а потенциал производства энергии - огромен, в нынешних условиях энергия волновых электростанций дороже, чем у станций на ископаемом топливе.

Использование термальной энергии океана

Температура воды в океане уменьшается вместе с глубиной. Разница температур используется для получения энергии. Лучшие точки для таких проектов: тропические и субтропические регионы - там, где глубокие воды находятся относительно близко к суше. В таких водах разница температур между верхним и нижним слоем может достигать 20 градусов Цельсия.