Смекни!
smekni.com

Проектирование и диагностика режимов электроэнергетической системы (стр. 5 из 7)

= 215∙6716+ 150∙4682,8 = 2146360МВт∙ч.

Число часов использования наибольшей нагрузки

,

где

- максимальная активная мощность, перетекающая через автотрансформаторы подстанции, МВт.

= 5619 ч.

Число часов наибольших потерь

, где

- активная мощность i-й ступени годового графика нагрузки (упорядоченной диаграммы), МВт;
- длительность появления мощность
в году, ч.

= 4968 ч.

Для остальных обмоток автотрансформатора расчёт производится аналогично и представлен в таблице 19.

Потоки мощности через обмотки автотрансформатора АТ4, число часов максимальной нагрузки и число часов наибольших потерь

Таблица 19

Параметр Ступень напряжения автотрансформатора
ВН СН НН
АТ4
, МВт∙ч
6716 2852 3864
, МВт∙ч
4682,8 2093,8 2589
, МВт∙ч
2146360 927250 1219110
, ч
5619 6088 5300
, ч
4968 5521 4643
АТ3 (вар. 1)
, МВт∙ч
2852 836 2016
, МВт∙ч
2093,8 722,8 1371
, МВт∙ч
927250 288160 639090
, ч
6100 6861 5326
, ч
5521 6147 4643

Годовые потери электроэнергии в автотрансформаторах подстанции ПС4 определяются по следующей формуле [4]:

,

где n – число автотрансформаторов на подстанции;

- потери холостого хода автотрансформатора, МВт;

,
,
- потери короткого замыкания в обмотках ВН, СН и НН, МВт;

,
,
- число часов наибольших потерь на сторонах ВН, СН и НН автотрансформаторов, ч;

,
,
- максимальный поток мощности через обмотки ВН, СН и НН автотрансформаторов, МВА;

- номинальная мощность, автотрансформаторов, МВА.

=7329,5 МВт∙ч.

= 73,3 тыс. руб.

Для автотрансформаторов подстанции ПС4 схемы варианта 2 расчёт проводится аналогично. Результаты расчёта потерь электроэнергии в автотрансформаторах схемы 1 представлены в таблице 20.

трансформатор электрический сеть

Расчёт потерь электроэнергии в автотрансформаторах для схемы 1 и схемы 2

Таблица 20

Трансформаторы схема
, МВт∙ч
, тыс. руб
ТДЦ-400000/500 (ПС1) 1и 2 9072,2 90,7
3хАОДЦТН-167000/500/220(ПС4) 1 и 2 7329,5 73,3
АТДЦТН-125000/220/110 (ПС3) 1 3358,6 33,6
ТРДЦН-100000/220(ПС3) 2 3348,2 33,5
ТДН-16000/110 (ПС2) 1 609,0 6,1
ТРДН-40000/220 (ПС2) 2 964,4 9,6
ТРДН-25000/110 (ПС5) 1 974,8 9,7
ТРДН-40000/220 (ПС5) 2 1153,7 11,5
∑(без учета одинаковых элементов) 1 49,4
2 54,6

Суммарные потери электроэнергии в линиях и трансформаторах для схем 1 и 2:

тыс.руб.

тыс.руб.

Суммарные издержки для каждого варианта схем (учитываются издержки на подстанции).

тыс.руб.

тыс.руб.

Суммарные издержки для каждого варианта схем (учитываются издержки на подстанции).

3.4 Затраты

тыс.руб.

тыс.руб.

3.5 Сравнение затрат

Вывод по пункту: В результате проведенного технико-экономического расчёта получили два примерно одинаковых по экономическим затратам варианта. Второй вариант с кольцевым исполнением системы (см.рис.2) оказался на 2,9% дороже первого варианта, однако он обеспечивает большие возможности по расширению и дальнейшему развитию электрической сети, кроме того кольцо выполнено на напряжение 220 кВ, в то время как в первом варианте используется 2 ступени 220 и 110 кВ. Таким образом принимаем в качестве наиболее рационального, второй вариант исполнения электрической сети.

ГЛАВА 4. Математическое моделирование элементов сети

В данной главе рассматривается моделирование всех элементов электрической сети: воздушных линий, трансформаторов, реакторов, нагрузок и источников.

4.1 Воздушные линии

Линии 220 кВ выполняются на одноцепных свободностоящих железобетонных опорах ПБ220-4 ([5], табл.4-4-10, рис.4-16д) рис. 5.

Линии 500 кВ выполняются на одноцепных свободностоящих опорах железобетонных опорах ПВС-500Ц-2 ([5], табл.4-4-12, рис.4-18в) рис. 6.

Рис.5 Опора 220 Рис.6 Опора 500 кВ

По ([5], табл.2.10.57, [5], 2.3.6.) для линий напряжением 500 кВ необходима гирлянда из 24 изоляторов ПС160-Б (ПС16-Б) высотой

, где H = 170 мм – высота одного изолятора. Аналогично рассчитываются параметры ВЛ 220, 110 кВ. Конструктивные параметры воздушных линий электропередачи [5] приведены в таблице 21.

Таблица 21 Конструктивные параметры воздушных линий электропередачи

Параметр ВЛ 500 кВ ВЛ 220 кВ
Тип опоры ПВС-500Ц-2 ПБ220-4
Материал опоры Железобетон Железобетон
Количество цепей 2,1 2
Количество и тип изоляторов 24xПС-16Б 12xПС-16Б
Высота гирлянды
, м
4,08 2,04
Число фаз (1 цепь) 3 3
Число тросов (1 цепь) 2 1
Высота подвески фаз, м А 18,92 19,46
В 18,92 13,96
С 18,92 13,96
Высота подвески тросов, м 27,5 24
Провод фазы 3xАС300/66 АС400/51
Удельное активное сопротивление фазы, Ом/км 0,034 0,075
Провод троса АС70/72 АС70/72
Удельное активное сопротивление троса, Ом/км 0,428 0,428
Расстояние между фазами, м АВ 11,0 5,85
ВС 11,0 7,6
АС 22,0 7,85
Диаметр провода, мм 24,5 21,6
Сечение провода,
354,3 274,6
Диаметр троса, мм 15,4 15,4
Шаг расщепления фазы
, мм
400 ---
Габаритная высота
, м
8 7
Стрела провеса проводов, м 10,92 6,96

При расчёте режима сети для прямой последовательности ВЛ представляются многополюсниками, параметры которых определяются на основании расчётных данных ВЛ ([3], табл.7.5,c.277).