Смекни!
smekni.com

Расчет электрического двигателя постоянного тока (стр. 1 из 9)

Введение

Двигатели постоянного тока обладают большой глубиной регулирования частоты вращения и сохраняют во всём диапазоне регулирования высокий коэффициент полезного действия. Несмотря на то, что при традиционной конструкции они в 2 – 3 раза дороже асинхронных двигателей с короткозамкнутым ротором их применяют во всех тех случаях, когда их свойства имеют решающее значение. Двигатели постоянного тока находят применение в металлообрабатывающих станках, с их помощью приводятся в действие прокатные станы (слябинги и блюминги). Крановые двигатели находят применение в приводах различных подъёмных механизмов. Двигатели постоянного тока широко используются в электрической тяге, например, на магистральных электровозах, в качестве рабочих двигателей на тепловозах, на пригородных электропоездах, в метрополитенах, на трамваях, троллейбусах и т.д. Двигатели постоянного тока используют для привода во вращение гребных винтов на морских судах. Они используются в автомобилях, тракторах, самолётах и других летательных аппаратах, где имеется питание на постоянном токе.

В данном курсовом проекте произведен расчет двигателя постоянного тока на основе двигателя типа 2П.

Серия

машин постоянного тока спроектирована к 1974 году в полном соответствии с рекомендациями Международной электротехнической комиссии (МЭК). Серия охватывает высоты оси вращения от 90 мм до 315 мм и диапазон мощностей от 0,37 кВт до 200 кВт. Машины этой серии предназначены для работы в широко регулируемых приводах.

В машинах серии

, по сравнению с машинами других серий, повышена перегрузочная способность, расширен диапазон регулирования частоты вращения, повышена мощность на единицу массы, улучшены динамические свойства, уменьшены шум и вибрации, увеличена надёжность и ресурс работы. В основу построения серии
машин постоянного тока был положен не габарит, а высота оси вращения.

Структура условного обозначения машин постоянного тока серии

:

,

где 1 – название серии: вторая серия машин постоянного тока;

2 – исполнение по способу защиты и вентиляции:

- защищённое с самовентиляцией,
- защищённое с независимой вентиляцией от постороннего вентилятора,
- закрытое с естественным охлаждением,
- закрытое с внешним обдувом от постороннего вентилятора;

3 – высота оси вращения, мм;

4 – условное обозначение длины сердечника якоря:

- средняя,
- большая;

5 – буква

при наличии встроенного тахогенератора (в двигателях без тахогенератора – опускается);

6 – климатическое исполнение и категория размещения (регламентируются ГОСТ 15150-69 и ГОСТ 15543-70).

Двигатели постоянного тока серии

предназначены для работы от сети постоянного тока или от тиристорных преобразователей. Номинальное напряжение якорной цепи 110, 220, 440 и 660 Вольт. В машинах с независимым возбуждением напряжение источника питания обмотки возбуждения составляет 110 В или 220 В.

Двигатели с высотой оси вращения

и
выполняются с двумя главными полюсами, а при большей высоте оси вращения
- с четырьмя полюсами. Двигатели серии
выполняются с полным числом добавочных полюсов.

1. Определение главных размеров. Выбор электромагнитных нагрузок

1.1 Определение главных параметров

1.1.1 Главными размерами машины постоянного тока являются наружный диаметр якоря D и расчётная длина сердечника lδ.

Наружный диаметр якоря D определяется заданной высотой оси вращения

[1] , стр. 339, и он равен

D = (h - 0,004) = 0,221 м (1.1)

1.1.2 Согласно рекомендации рисунка 8.9 [1] и рисунка 8.8 [1] выбираем значения магнитной индукции в воздушном зазоре

Тл и линейной нагрузки
А/м. Согласно рисунку 8.7 [1] расчётный коэффициент полюсного перекрытия в зависимости от диаметра якоря принимаем
.

Расчетная электромагнитная мощность:

, (1.2)

где

кВт – номинальная мощность двигателя,

Предварительное значение КПД электродвигателя выбираем

по рис. 8-6 [1]: η=0,86

Вт.

1.1.3 Определяем длину сердечника якоря:

, (1.3)

где

– номинальная частота вращения ротора,

мм – диаметр якоря.

м.

Длина магнитопровода якоря равна расчетной длине машины.

1.1.4 Определяем отношение длины магнитопровода якоря к его диаметру:

(1.4)

.

Полученное λ удовлетворяет условию

1.2 Выбор типа обмотки якоря

1.2.1 Предварительное значение номинального тока двигателя:

, (1.5)

где

В — номинальное напряжение.

А.

1.2.2 Для выбора типа обмотки якоря двигателя постоянного тока параллельного возбуждения необходимо значение номинального тока якоря.

Предварительное значение номинального тока якоря:

, (1.6)

где

– коэффициент, определяющий отношение тока возбуждения
к току якоря, по таблице 8-10 [1]

,

А.

Исходя из принятого числа главных полюсов и предварительного значения тока якоря

, принимаем простую волновую обмотку. Число параллельных ветвей
.

1.2.3 Ток параллельной ветви обмотки якоря, А:

, (1.7)

А.

1.3 Определение обмоточных данных

1.3.1 Предварительное значение числа проводников обмотки якоря:

, (1.8)

.

1.3.2 При высоте оси вращения

мм, зубцовое деление
мм.

[1] стр. 342

Определяем число пазов якоря:

,
(1.9)

,

.

Выбираем

.

1.3.3 Зубцовое деление

; (1.10)

м.

1.3.4 Число эффективных проводников в пазу:

, (1.11)

.

Принимаем

, уточняем