Смекни!
smekni.com

Световое излучение в ультрафиолетовой, видимой и инфракрасной областях спектра (стр. 4 из 5)

Первые работы по локальной катодолюминесценции выполнялись в рентгеновских микроанализаторах. Для сбора и вывода КЛ излучения использовался световой микроскоп, вмонтированный в камеру объекта (рис. 9). Регистрация проводилась с помощью ФЭУ: либо непосредственно на выходе светового микроскопа (интегральная КЛ), либо после прохода излучения через монохроматор (спектральная КЛ).


Если, кроме зеркал, использовались призмы и линзы светового микроскопа, то это ограничивало спектральный диапазон пропускаемого излучения видимой областью спектра. Интегральную (полную интенсивность излучения) КЛ можно регистрировать, устанавливая световод, подсоединенный к ФЭУ, или просто сами фотоприемники (например, из Ge и PbS) в непосредственной близости к объекту. Фотоприемники можно располагать и под образцом, если он достаточно тонкий. В этом случае реализуется метод КЛ «на просвет», что позволяет наблюдать структурные дефекты в толще материала. Другим способом вывода излучения КЛ из камеры объекта является использование параболического зеркала и фокусирующей линзы (рис. 10). Эффективность сбора КЛ излучения такой системы достигала 95%. Системы, использующие зеркала и линзы, являются сложными в юстировке. Однако в отличие от систем с гибким световодом (например, эллиптическое зеркало, в фокусах которого размещены объект и торец выводящего излучение световода (рис. 11)) они позволяют оптимальным образом завести излучение в щель монохроматора, использовав полностью его угловую апертуру.


Регистрация спектра при использовании монохроматоров происходит последовательно по спектральному диапазону. Применение оптических многоканальных анализаторов (ОМА) позволило перейти от последовательного накопления информации к одновременному по всему спектральному диапазону или по всем временным интервалам импульса релаксации КЛ.

В обоих случаях дисперсия излучения по спектру или по времени трансформировалась в пространственную дисперсию (в первом случае с помощью монохроматора с удаленной щелью на выходе, во втором — с помощью стрейк-камеры); далее эта пространственная картина одновременно считывалась ОМА и накапливалась в различных каналах многоканального анализатора одновременно. Это позволяет существенно сократить время регистрации информации и исключить влияние нестабильностей режима работы установки, которое может быть значительным при длительном времени последовательной регистрации.

В настоящее время, для исследования катодолюминесценции в растровом электронном микроскопе, более широкое распространение получили системы с использованием эллиптического зеркала. На рисунке 12 показана схема исследования CL-излучения с помощью эллипсоидального зеркала.

Во время эксперимента, исследуемая область образца, лежит в первом фокусе эллипсоида (фокусное расстояние f1). Достоинства этой схемы в том, что образец остается видимым для других детекторов, что позволяет проводить одновременно дополнительные измерения (например, EDX-анализ), без внесения каких-либо изменений в образце или в данной системе. Ограничения возникают только из-за определенной геометрии камеры СЭМ.


Излучаемый свет от образца отражается от зеркала и попадает на второй фокус системы (фокусное расстояние f2), проходя через окно в стенке камеры СЭМ без дополнительных оптических компонентов. Здесь сфокусированный пучок света попадает в монохроматор через входную щель (модели SEM-CL), или непосредственнона детектор CL-системы (модели SEM-CL View). В качестве детекторов могут применяться фотоэлектронные умножители или ПЗС матрицы. Весь оптический путь защищен от постороннего света. Зеркало в данной системе является подвижным.

Для регистрации КЛ излучения, и построения цветного изображения объекта используется схема с параболическим зеркалом, показанная на рис. 13.

Идея заключается в том, что спектр катодолюминесценции разделяется фильтрами на три цветовых канала. Каждый канал чувствителен к "своему" спектральному интервалу - красный (R), зеленый (G) и синий (B). Модуляцией яркости и оттенков цветов, с помощью трех соответствующих видеосигналов - R, G и B, можно создать цветное изображение люминесцирующего микрообъекта. Цветовой контраст можно использовать как микро характеристику материала, для отображения дефектов, измерения их плотности, анализа люминесценции центров и состава, проверки динамики процессов кристаллизации и участия примесей в процессе роста кристаллов и пленок и т.д.

Существует сравнительно новый, и хорошо исследованный вид люминесценции, с яркостью, в тысячи раз превышающей яркость других видов люминесценции - импульсная катодолюминесценция (ИКЛ). ИКЛ возбуждается при облучении диэлектриков наносекундными пучками электронов с энергией 100-200 кэВ при потоке импульсной мощности пучка более 10 МВт/см2.

ИКЛ характеризуется следующими особенностями:

-возбуждение люминесценции осуществляется в воздухе при комнатной температуре без специальной подготовки образцов;

-в образцах не возникают необратимые дефекты;

-люминесценция имеет стабильный информативный спектр;

-высокая чувствительность к содержанию примесных ионов;

-возможность проведения анализа чистоты и дефектного состава образцов.

Направления исследований и применения эффекта ИКЛ:

-неразрушающий люминесцентный анализ;

-исследование механизмов миграции энергии возбуждения и трансформации примесных ионов;

-разработка и изготовление настольных автоматизированных импульсных катодолюминесцентных спектрографов.

Примером технической реализации прибора на основе эффекта ИКЛ является спектроанализатор «КЛАВИ». В кристаллах, стекле, керамике, порошке и жидкости люминесценция возбуждается электронным пучком длительностью 1,5 нс с энергией электронов 140-150 кэВ и током 0,3 кА. Область регистрируемого спектра люминесценции – 360 - 850 нм. Прибор отличается компактностью и малым уровнем электромагнитных помех, что делает возможным его интеграцию с комплексом компьютерной обработки спектров, оперативное развертывание и использование в нестационарных условиях.


4. Информативность сигнала катодолюминесценции

Иногда спектральные изменения КЛ по тем или иным причинам бывают столь незначительными, что определить их по самим спектрам не удается. В другом случае, области образца, испускающие КЛ различного спектрального состава, бывают случайно распределенными по образцу и неразличимы ни в интегральной КЛ, ни в других режимах РЭМ. В этих случаях полезно использовать аналог обычной флуоресцентной световой микроскопии — режим цветной КЛ в РЭМ, регистрируя непосредственное цветное КЛ изображение, на котором можно различать ничтожно малые изменения в спектре. Этот метод можно использовать и для фазового анализа. Высокая чувствительность человеческого глаза к изменению цветности может быть использована также для повышения информативности любого изображения путем цветокодирования.

К характеристикам сигнала КЛ, которые несут полезную информацию об объекте, в основном относятся полная интенсивность КЛ-излучения, так называемая интегральная интенсивность и спектральный состав сигнала КЛ. Рассмотрим примеры получаемой информации при регистрации этих характеристик.

4.1 Интенсивность сигнала интегральной катодолюминесценции

Это наиболее просто регистрируемая характеристика сигнала КЛ. Изображение в этом случае представляет собой не что иное, как карту распределения по поверхности объекта темпа фотонной эмиссии, причины изменения которого при переходе с одного места объекта на другое могут быть различными.

Интенсивность КЛ-излучения зависит от нескольких параметров, каждый из которых может иметь неоднородное распределение по поверхности объекта.

Например, наличие на поверхности металлических контактов приводит к изменению степени потерь энергии электронами зонда непосредственно в основном материале объекта и соответственно к изменению люминесцентных характеристик по поверхности объекта. Наличие пленок загрязнений или вариации толщины диэлектрических покрытий могут приводить к вариациям степени отражения света от границы объект—вакуум при его выходе из объекта. Имеется большое число факторов, влияющих на соотношение эффективности каналов излучательной и безызлучательной рекомбинации в различных местах объекта, что сказывается на локальных люминесцентных характеристиках. К ним относятся, например, тип и концентрация легирующей примеси и наличие дефектов структуры. Последние чаще всего проявляют себя как центры безызлучательной рекомбинации и выглядят на изображении в виде темных пятен.

4.2 Спектральный состав сигнала катодолюминесценции

Спектр КЛ-излучения несет информацию о механизмах излучательной рекомбинации, которые имеют место в данной области объекта. Выделяя с помощью монохроматора тот или иной участок спектра, соответствующий определенному механизму излучательной рекомбинации, и используя этот сигнал для построения изображения, получают карту распределения данного рекомбинационного механизма по поверхности объекта. Такая картина будет представлять собой карту распределения отдельных фаз по поверхности объекта, если каждой фазе соответствует КЛ-эмиссия в определенном участке спектра. Такой режим можно использовать для неразрушающего контроля многослойных структур, если каждый слой характеризуется своим диапазоном длин волн КЛ-излучения. При наличии более чем двух фаз наглядным является цветное представление изображения, например методом цветной КЛ, при которой также легко заметить взаимное проникновение фаз одной в другую.