Смекни!
smekni.com

Электромагнитные переходные процессы в электроэнергетических системах (стр. 4 из 5)

Все расчеты выполняются для трехфазного и двухфазного КЗ на землю. КЗ происходит в начале цепи линии W. Качественный анализ устойчивости ЭЭС проведем при наличии на эквивалентном генераторе регуляторов возбуждения пропорционального действия, принимая изменяющуюся в момент коммутации ЭДС Е¢ за постоянную величину Е¢=const. Работа устройств АПВ здесь не рассматривается.

4.1 Расчет и построение угловых характеристик мощности нормального, аварийного и послеаварийного режимов

4.1.1 Нормальный режим

Для нормального режима работы все параметры берем из пункта 2.3. Характеристика мощности имеет следующий вид

;

4.1.2 Послеаварийный режим

В послеаварийном режиме (режим II) происходит отключение цепи линии W, на которой произошло короткое замыкание. Тогда сопротивление системы составит

.

Находим взаимное сопротивление

Характеристика мощности в послеаварийном режиме примет следующий вид:

4.1.3 Аварийный режим

В аварийном режиме рассматривается 2 вида КЗ: трехфазное и двухфазное на землю. В месте аварии вводится шунт с сопротивлением xD. Для трехфазного режима xD=0, для двухфазного на землю xD=x2S//x0S.

Определим результирующие сопротивления схем обратной и нулевой последовательностей. В схеме замещения обратной последовательности сопротивления трансформатора Т1 и линии W остаются неизменными (см. раздел 1), а сопротивление генератора G1 пересчитывается. ЭДС источников равны нулю.

Сопротивления генератора G1 обратной последовательности:

,

где

– сопротивление генератора токам обратной последовательности, о. е.

Преобразуем схему замещения обратной последовательности.

;

;

Рисунок 9 – Схема замещения обратной последовательности

В схеме замещения нулевой последовательности сопротивления двухцепной линии Wувеличивается в 5 раз.

Сопротивление трансформатора Т1 не изменяется и равно

.

Генератор G1 в схеме замещения нулевой последовательности участвовать не будет, так как находится за обмоткой трансформатора Т1, соединенной в треугольник.

Рисунок 10 – Схема замещения нулевой последовательности

;


Определим сопротивление шунта при двухфазном КЗ на землю

Преобразуем схему к расчетному виду.

;

Рисунок 11 – Схема замещения аварийного режима

Рисунок 12 – Преобразованная схема замещения

– трехфазное КЗ

;


При трехфазном КЗ передача мощности в приемную систему невозможна.

– двухфазное КЗ на землю

;

4.2 Определение предельного угла отключения КЗ в простейшей ЭЭС. Построение зависимости изменения угла d¢(t) и определение предельного времени отключения

Для определения предельного угла отключения пользуются критерием динамической устойчивости. Площадка ускорения должна быть равна площадке возможного торможения. Предельный угол и определяет равенство этих площадок.

Выражение для определения предельного угла отключения:

,

где

максимальная мощность генератора в послеаварийном режиме;

– максимальная мощность генератора в аварийном режиме;

– максимальная мощность генератора в нормальном режиме;

– критический угол, равный

– трехфазное КЗ


;

– двухфазное КЗ на землю

;

Из полученных результатов видно, что система неустойчива при обоих видах КЗ и требует отключения по условию сохранения динамической устойчивости.

Характер изменения угла δ/(t), по которому можно найти предельное время отключения КЗ tоткл.пр. или время tmax достижения углом величины δ/max при возникших качаниях ротора эквивалентного генератора, определится решением дифференциального уравнения относительно движения ротора эквивалентного генератора

,

где Тj – постоянная инерции генератора.

Постоянная инерции эквивалентного генератора G1 равна


Решим дифференциальное уравнение методом последовательных интервалов. Принимаем шаг интегрирования Δt=0,05 с. При этом коэффициент k (в электрических градусах) будет равен

Приращение угла на первом интервале составит

где избыток мощности в начале интервала равен

Величина угла к концу первого интервала

Приращение угла за любой последующий i-ый интервал времени определим по выражению

Прибавив к значению угла на предыдущем интервале его приращение на данном интервале, определим угол к концу i-го интервала:


При трехфазном КЗ и двухфазном КЗ на землю расчет ведем до предельного угла отключения КЗ. Расчет проводим в табличной форме для трехфазного (таблица 12) и двухфазного КЗ на землю (таблица 13).

Таблица 12 – Изменение угла δ/(t) при трехфазном КЗ

t, c d/
0 23,54 0,145 0
0,05 23,54 0,145 0,31
0,10 23,85 0,145 0,62
0,15 24,47 0,145 0,93
0,20 25,40 0,145 1,24
0,25 26,64 0,145 1,55
0,30 28,16 0,145 1,86
0,35 30,02 0,145 2,17
0,40 32,19 0,145 2,48
0,45 34,67 0,145 2,79
0,50 37,46 0,145 3,10
0,55 40,56 0,145 3,41
0,60 43,97 0,145 3,72
0,65 47,69 0,145 4,03
0,70 51,72 0,145 4,34
0,75 56,06 0,145 4,65
0,80 60,71 0,145 4,96
0,85 65,67 0,145 5,27
0,90 70,94 0,145 5,58
0,95 76,52

Таблица 13 – Изменение угла δ/(t) при двухфазном КЗ на землю

t, c d/
0 23,54 0,103 0,11
0,05 23,65 0,102 0,33
0,10 23,98 0,102 0,55
0,15 24,53 0,101 0,77
0,20 25,30 0,100 0,98
0,25 26,28 0,098 1,19
0,30 27,47 0,096 1,40
0,35 28,87 0,094 1,60
0,40 30,47 0,091 1,80
0,45 32,27 0,088 1,99
0,50 34,26 0,085 2,17
0,55 36,43 0,082 2,35
0,60 38,78 0,079 2,52
0,65 41,30 0,075 2,68
0,70 43,98 0,071 2,83
0,75 46,81 0,068 2,98
0,80 49,79 0,064 3,12
0,85 52,91 0,060 3,25
0,90 56,16 0,057 3,37
0,95 59,53 0,054 3,48
1,00 63,01 0,050 3,59
1,05 66,60 0,048 3,69
1,10 70,29 0,045 3,79
1,15 74,08 0,043 3,88
1,20 77,96 0,041 3,97