Смекни!
smekni.com

Расчет и анализ установившихся режимов работы электрических машин (стр. 1 из 7)

Расчет и анализ установившихся режимов работы электрических машин

РЕФЕРАТ

Данная курсовая работа включает в себя:

- изучение конструкций и принципа действия силовых масляных трансформаторов, синхронных турбогенераторов, синхронных явнополюсных двигателей и асинхронных двигателей;

- расчет установившегося режима работы синхронных и асинхронных двигателей, статической нагрузки трансформаторов, линий электропередачи, и синхронного генератора при номинальном напряжении в узле нагрузки;

- расчет установившегося режима работы всех элементов при пониженном напряжении в узле нагрузки, составляющем 90% от номинального значения;

- сопоставление режимных параметров при разном уровне напряжений и оценка работы оборудования при пониженном напряжении;

- выполнение индивидуального задания.


Введение

В условиях научно-технического развития электрификация нашла широкое применение в промышленности, сельском хозяйстве, транспорте и быту. Электрическая энергия вырабатывается на электростанциях электрическими машинами – генераторами, преобразующими механическую энергию в электрическую. Основная часть электроэнергии (до 80%) вырабатывается на тепловых электростанциях, где при сжигании топлива (уголь, торф, газ) нагревается вода и переводится в пар высокого давления. Последний подается в Трубину, где, расширяясь, приводит ротор турбины во вращение (тепловая энергия в турбине преобразуется в механическую). Вращение ротора турбины передается на вал генератора (турбогенератора). В результате электромагнитных процессов, происходящих в генераторе, механическая энергия преобразуется в электрическую. В процессе потребления электрической энергии, происходит ее преобразование в другие виды энергии (тепловую, механическую, химическую). Около 70% электроэнергии используется для приведения в движение станков, механизмов, транспортных средств, т.е. для преобразования ее в механическую энергию. Это преобразование осуществляется электрическими машинами – электродвигателями.

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места ее потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Ее необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500 кВ и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи. Поэтому в процессе передачи и распределении электрической энергии приходится неоднократно повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами.

Наряду с большой энергетикой электрические машины получили широкое применение в системах автоматического управления и бытовой техники в качестве двигателей исполнительных механизмов либо различного рода электромеханических преобразователей и датчиков.

Поэтому знание основ теории электрических машин необходимо каждому специалисту, работающему в любой из сфер производства, распределения или потребления электрической энергии.

1. Описание конструкции и принципа действия силовых элементов сети

1.1 Силовой масляный трансформатор

1.1.1 Принцип действия трансформатора

Трансформатором называют статическое электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменный ток другого напряжения с сохранением частот.

В зависимости от назначения трансформаторы разделяются на силовые трансформаторы общего назначения и трансформаторы специального назначения. Силовые трансформаторы общего назначения применяются в линиях передачи и распределения электроэнергии, а также в различных электроустановках для получения, требуемого напряжения. Трансформаторы специального назначения характеризуются разнообразием рабочих свойств и конструктивного исполнения. К ним относятся печные и сварочные трансформаторы, трансформаторы для устройств автоматики, испытательные и измерительные трансформаторы и т.д.

Простейший силовой трансформатор состоит из магнитопровода (сердечника), выполненного из ферримагнитного материала (листовая электромагнитная сталь), и двух обмоток, расположенных на стержнях магнитопровода (рис. 1.1, а) Первичная обмотка трансформатора присоединена к источнику переменного тока Г на напряжение U1. К вторичной обмотке подключен потребитель Zн.


Рис. 1.2. Электромагнитная (а) и принципиальная (б) схемы трансформатора

Первичная и вторичная обмотки не имеют электрической связи друг с другом, и мощность из одной обмотки в другую передается электромагнитным путем. Магнитопровод, на котором расположены эти обмотки, служит для усиления индуктивной связи между обмотками. Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает ток I1, который создает в магнитопроводе переменный магнитный поток Ф. Замыкаясь в магнитопроводе, этот поток сцепляется с обеими обмотками и индуцирует в нихЭДС:

- В первичной обмотке ЭДС самоиндукцииe1= -w1(dФ/dt) (1.1)

- Во вторичной обмотке ЭДС самоиндукции e2= -w2 (dФ/dt) (1.2)

где w1 и w2 –число витков в первичной и вторичной обмотках трансформатора.

При подключении нагрузки Zн к выводам вторичной обмотки под действием ЭДС е2 в цепи этой обмотки создается ток I2, а на выводах вторичной обмотки устанавливается напряжение U2. В повышающих трансформаторах U2 > U1,а в понижающих U2 <U1.

Из (1.1) и (1.2) видно, что ЭДС e1 и e2, наводимые в обмотках трансформатора, отличаются друг от друга лишь числом витков w1 и w2 в обмотках. Поэтому, применяя обмотки с требуемым соотношением витков, можно изготовить трансформатор на любое отношение напряжений.

Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего напряжения (ВН); обмотку, присоединенную к сети меньшего напряжения, - обмоткой низшего напряжения (НН). На рис.1.1,б показано изображение однофазного трансформатора на принципиальных электрических схемах.

Трансформаторы обладают свойством обратимости: один и тот же трансформатор можно использовать в качестве повышающего и понижающего. Но обычно он имеет определенное назначение: либо он повышающий, либо понижающий.

Трансформатор – это аппарат переменного тока. Если же первичную обмотку подключить к источнику постоянного тока, то магнитный поток в магнитопроводе трансформатора также будет постоянным как по величине, так и по направлению, поэтому в обмотках трансформатора не будет наводится ЭДС, а следовательно, электроэнергия не будет передаваться из первичной цепи во вторичную.

Трансформаторы классифицируют по нескольким признакам:

- по назначению – общего и специального назначения, импульсные, для преобразования частоты и т.д.;

- по виду охлаждения – с воздушным и масляным охлаждением;

- по числу трансформируемых фаз – однофазные и трехфазные;

- по форме магнитопровода – стержневые, броневые, бронестержневые, тороидальные;

- по числу обмоток на фазу – двухобмоточные, многообмоточные.

Современный трансформатор состоит из различных конструктивных элементов: магнитопровода, обмоток, вводов, бака и т.д. Магнитопровод с насаженными на его стержни обмотками составляет активную часть трансформатора. Остальные элементы называют неактивными (вспомогательными) частями. Рассмотрим конструкцию основных частей трансформатора.

Магнитопровод выполняет в трансформаторе две функции: во-первых, он составляет магнитную цепь, по которой замыкается основной магнитный поток трансформатора, а во-вторых, он предназначен для установки и крепления обмоток, отводов, переключателей.

Магнитопровод имеет шихтованную конструкцию, т.е. он состоит из тонких стальных пластин, покрытых с двух сторон изолирующим лаком. Такая конструкция магнитопровода обусловлена стремлением ослабить вихревые токи, наводимые в нем переменным магнитным потоком, а следовательно, уменьшить величину потерь энергии в трансформаторе.

Рис. 1.3. Магнитопровод трехфазного трансформатора стержневого типа с обмотками.

В магнитопроводе стержневого типа (рис.1.2, а) вертикальные стержни 1, на которых расположены обмотки 2, сверху и снизу замкнуты ярмами 3. На каждом стержне расположены обмотки соответствующей фазы и проходит магнитный крайних стержнях – потоки Фа и Фс, а в среднем стержне Фв. На рис. 1.2, б показан внешний вид магнитопровода.

Обмотки трансформаторов средней и большой мощности выполняют из обмоточных проводов круглого или прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой. Основой обмотки является бумажно-бакелитовый цилиндр, на котором крепятся элементы, обеспечивающие обмотке механическую и электрическую прочность. По взаимному расположению на стержне, обмотки разделяют на концентрические и чередующиеся.

Концентрические обмотки выполняют в виде цилиндров, размещаемых на стержне концентрически: ближе к стержню располагают обмотку НН, а с наружи – обмотку ВН (рис. 1.3, а). Чередующиеся (дисковые) обмотки выполняют в виде отдельных секций (дисков) НН и ВН и располагают на стержне в чередующемся порядке (рис. 1.3, б). Они применяются в трансформаторах специального назначения.