Смекни!
smekni.com

Основные принципы генерирования электромагнитных волн (стр. 3 из 5)

определение условий оптимального режима работы ВЧ генератора согласно определенному критерию. Такими критериями могут являться: максимум колебательной мощности в нагрузке

максимальный КПД
, максимальный коэффициент усиления по мощности
, минимум искажений, вносимых усилителем в сигнал, максимальная ширина полосы пропускания;

расчете и построении различных характеристик генератора: динамической, нагрузочной, амплитудной, фазоамплитудной, амплитудно-частотной, фазочастотной в одночастотном режиме работы. Определение данных характеристик дается ниже. Дополнительный анализ работы ВЧ генератора может проводиться при усилении модулированных и сложных ВЧ сигналов, например многочастотных. Перечисленные параметры и характеристики ВЧ генератора можно найти с помощью метода гармонической линеаризации (рис. 2.2).

Рис. 2.2. Принцип метода гармонической линеаризации

Электронный прибор и ВЧ генератор в целом являются нелинейными устройствами. В частности, при подаче на вход такого прибора синусоидального напряжения (рис. 2.2,а) сигнал на его выходе искажается (рис. 2.2,б). Согласно разложению функции в ряд Фурье (2.5) сигнал, приведенный на рис. 2.2,б, можно представить в виде суммы постоянной составляющей и нескольких гармоник (рис. 2.2,в). Из этой «смеси» с помощью фильтра можно выделить только 1-ю гармонику сигнала. Именно такую функцию и выполняет выходная согласующая цепь в схеме ВЧ генератора (см. рис. 2.1,а). Поэтому напряжение на нагрузке генератора снова приобретает синусоидальную форму (рис. 2.2,г).

Именно в фильтрации несинусоидального сигнала, выделении из него 1-й гармоники сигнала и преобразовании его вновь в синусоидальный сигнал и состоит метод гармонической линеаризации, лежащий в основе анализа ВЧ генератора. Сам анализ включает в себя:

- определение с помощью ВАХ электронного прибора формы тока на его выходе при подаче на вход синусоидального сигнала;

- разложение в ряд Фурье согласно (4.5) полученной несинусоидальной зависимости для тока

эквивалентного генератора электронного прибора (см. рис. 2.1,б);

-определение напряжения на выходе электронного прибора; определение выходной мощности 1-й гармоники

поступающей в нагрузку;

- определение потребляемой мощности

от источника постоянного тока и КПД генератора;

- анализ входной цепи ВЧ генератора, определение мощности входного сигнала

, и коэффициента усиления генератора по мощности
,

- выбор схемы и расчет выходной и входной согласующих электрических цепей ВЧ генератора (см. рис. 2.1,а).

2.2. Баланс мощностей в ВЧ генераторе

Поскольку в ВЧ генераторе происходят процессы преобразования энергии разных источников, то важно составить баланс мощностей для выходной и входной цепей всего устройства.

В выходной цепи происходит преобразование энергии источника постоянного тока мощностью

в энергию высокочастотных колебаний мощностью
. Поэтому для нее баланс мощностей имеет вид

, (2.1)

где

- мощность, рассеиваемая в виде тепла в электронном приборе (в лампе - на аноде, в биполярном транзисторе - на коллекторе, в полевом - на стоке).

Мощность рассеивания можно определить как разность

или с помощью определенного интеграла:

, (2.2)

где

,
- ток и напряжение на выходе электронного прибора. Во входной цепи первичным источником является высокочастотный генератор с ЭДС
(см. рис. 2.1,а), отдающий ВЧ генератору мощность
. Поэтому во входной цепи баланс мощностей имеет вид

, (2.3)

где

- мощность, передаваемая источнику постоянного тока во входной цепи, если таковой имеется;
- мощность, рассеиваемая в виде тепла в электронном приборе (в лампе - на управляющей сетке, в биполярном транзисторе - в базе, в полевом - на затворе).

Суммарная мощность тепла, рассеиваемая в электронном приборе, согласно (2.1) и (2.3) запишется в виде

. Значение
не должно превышать максимально допустимую мощность рассеивания электронного прибора, указываемую в его паспорте.

2.3. Динамические характеристики ВЧ генератора и максимально отдаваемая им мощность

Любой генератор отдает максимальную мощность в нагрузку при выполнении определенного условия. Из курса электротехники известно, что генератор с ЭДС
и внутренним сопротивлением
; при
и
отдает в нагрузку максимальную мощность, равную
, при
(рис. 2.3). Мощность
называется номинальной мощностью генератора.

Рис. 2.3. Определение номинальной мощности генератора.

В ВЧ генераторах оба параметра (

и
), зависящие от многих факторов, не являются постоянными величинами, и поэтому здесь условие получения максимальной мощности, передаваемой генератором в нагрузку, усложняется и вытекает из понятия «динамическая характеристика генератора по 1-й гармонике сигнала». Пусть в результате эксперимента или расчета найдены зависимости для функций напряжения
и тока
, на выходе электронного прибора. Пример графиков таких функций приведен на рис. 4.4,а,б. Из двух данных зависимостей, исключив время t, можно получить третью
, называемую динамической характеристикой ВЧ генератора для мгновенных значений тока и напряжения (рис. 4.4,в).

Рис. 2.4. Динамическая характеристика ВЧ генератора для

мгновенных значений тока и напряжения

Разложив в ряд Фурье семейство функций

и
, определим первые гармоники тока
и напряжения
. Зависимость
называется динамической характеристикой по 1-й гармонике сигнала. Пример такой характеристики приведен на рис. 4.5,г. С ее помощью определим условия передачи максимальной мощности от генератора в нагрузку. Функция
является нелинейной, зависящей от частоты и мощности входного сигнала и напряжения питания. Зафиксируем данные параметры и запишем для мощности, передаваемой генератором в нагрузку:

, (2.4)