[Год] |
[Введите название организации]Directx |
[Введите название документа] |
[Введите аннотацию документа. Аннотация обычно представляет собой краткий обзор содержимого документа. Введите аннотацию документа. Аннотация обычно представляет собой краткий обзор содержимого документа.] |
Основное назначение генератора состоит в преобразовании энергии источника постоянного тока в энергию ВЧ или СВЧ колебаний. Генераторы подразделяются на два основных типа:
- автогенераторы, работающие в режиме самовозбуждения или автоколебаний, частота которых определяется параметрами самого устройства;
Рис. 1.1. Основные типы генераторов
В обоих типах генераторов используются одни и те же типы электронных приборов и физические принципы их работы можно рассматривать в рамках общей теории.
Известно большое число разнообразных электронных приборов - электровакуумных и полупроводниковых, применяемых в генераторах. В основе работы всех типов электронных приборов лежит общий физический принцип: взаимодействие потока движущихся носителей заряда с электромагнитным полем. Различие состоит в разном характере этого взаимодействия и в способах управления потоком носителей заряда. Основные электронные приборы, используемые в генераторах:
- электровакуумные приборы (триоды, тетроды и др.);
- полупроводниковые приборы (транзисторы биполярные и полевые, диоды (туннельные, диоды Ганна и лавинно-пролетные));
- клистроны;
- лампы бегущей волны;
- приборы магнетронного типа.
Работу различных типов электронных приборов объединяет физический принцип взаимодействия потока носителей заряда (сокращенно - потока) с электромагнитным полем (сокращенно - полем).
Принцип устройства генератора с триодом приведен на рис. 1.2. Поток носителей зарядов (электронов) движется в приборе от катода к аноду, проходя сквозь управляющую сетку.
Управление этим потоком - электростатическое, с помощью сигнала, приложенного к сетке. Ток прибора возбуждает электромагнитное поле в колебательном контуре, включенном в анодную цепь триода. В генераторе следует выполнить соотношение , где - частота сигнала, - время пролета электронов.Рис. 1.2. Устройство генератора с триодом
Рис. 1.3. Устройство генератора на биполярном транзисторе
В полевом транзисторе происходит перенос только основных носителей заряда (обычно ими являются электроны) - от истока к стоку. Управление током в приборе осуществляется за счет воздействия электрического поля на поток основных носителей заряда, движущихся в полупроводниковом канале. Это управляющее поле, создаваемое внешним сигналом возбуждения, приложенным к затвору, направлено перпендикулярно потоку. Как и в предыдущем случае, в генераторе с полевым транзистором следует выполнить условие:
, где - частота сигнала; - время переноса носителей заряда от истока к стоку.Рис. 1.4. Устройство генератора на полевом транзисторе
Среди полупроводниковых диодов, используемых в схемах ВЧ и СВЧ генераторов можно выделить: туннельный диод; диод Ганна и лавинно-пролетный диод. Эквивалентные модели этих приборов можно представить в виде нелинейной реактивной и отрицательной активной проводимости. Благодаря последней, при подключении такого прибора к резонатору, возможна генерация или усиление СВЧ колебаний с частотой, определяемой из соотношения
, где - время пролета носителей заряда - электронов или дырок - в пролетной части полупроводниковой структуры.Клистрон используется только в СВЧ диапазоне. В нем имеется два резонатора - входной, к которому подводится сигнал возбуждения, и выходной, с которого снимается сигнал, усиленный по мощности. Носители заряда - электроны - движутся в приборе от катода к коллектору, к которому приложено постоянное напряжение. Проходя сквозь зазор входного резонатора, поток электронов модулируется по скорости. Затем в пространстве дрейфа прибора, расположенном между резонаторами, происходит преобразование одного вида модуляции потока по скорости в другой - по плотности. Усиленный по мощности поток электронов, проходя сквозь зазор выходного резонатора, возбуждает в нем электромагнитное поле. В клистронном генераторе взаимодействие потока с полем, происходящее в зазоре резонатора, носит кратковременный характер, но время пролета носителей от катода к коллектору
, относительно велико. Поэтому значение параметра . Помимо двухрезонаторного выпускаются многорезонаторные клистронные генераторы, имеющие больший коэффициент усиления по мощности.Рис. 1.5.Клистронный генератор
Рис. 1.6. Генератор на лампе бегущей волны
При этом добиваются следующего примерного равенства
, благодаря чему происходит взаимодействие потока электронов с электромагнитной волной, движущейся в прямом направлении, которая увеличивает свою энергию по мере распространения. Увеличенный по мощности СВЧ сигнал снимается с противоположного от входа конца спирали. Существует несколько разновидностей ЛБВ, в том числе и такие, в которых взаимодействие потока электронов происходит не с прямой, а с обратной электромагнитной волной. Подобные приборы называются лампами с обратной волной (ЛОВ). В ЛБВ и ЛОВ имеет место длительное, непрерывное взаимодействие потока с полем и относительно большое время пролета носителей от катода к коллектору. Поэтому у этих приборов, как и у клистрона, значение параметра . Анализ работы различных электронных приборов позволяет выделить общие черты, свойственные всем типам ВЧ и СВЧ генераторов.Как указывалось выше, в основе работы всех типов электронных приборов лежит общий физический принцип: взаимодействие потока движущихся носителей заряда с электромагнитным полем. Обозначим время этого взаимодействия через
. Так, в биполярном транзисторе под следует понимать время переноса неосновных носителей заряда от эмиттера к коллектору, в полевом транзисторе - время переноса основных носителей заряда от истока к стоку, в электровакуумных лампах - время движения электронов от катода к аноду, в СВЧ лампах бегущей волны - время движения электронов вдоль спирали от катода к коллектору и т.д. В зависимости от обобщенного параметра , где - частота сигнала, электронные генераторные приборы можно разделить на три основные группы: 1) ; 2) ; 3) .