4.1.3 Поршневая паровая машина.
Основы конструкции поршневой паровой машины, изобретенной в конце XVIII века[1], в основном сохранились до наших дней. В настоящее время она частично вытеснена другими типами двигателей. Однако у нее есть свои достоинства, заставляющие иногда предпочесть ее турбине. Это — простота обращения с ней, возможность менять скорость и давать задний ход.
В основу краткой классификации паровой машины могут быть положены признаки:
· по назначению: стационарные, паровозные, судовые, локомобильные, автомобильные и др.;
· по расположению и числу цилиндров: горизонтальные, вертикальные, наклонные; одноцилиндровые и многоцилиндровые – тандем-машины и компаунд-машины;
· по числу оборотов: тихоходные, среднеходные, быстроходные;
· по давлению и способу использования отработавшего пара: конденсационные, с выхлопом в атмосферу, с противодавлением, с промежуточным отбором пара;
· по действию пара на поршень: простого и двойного действия;
· по типу парораспределения: золотниковые, клапанные, крановые, прямоточные.
Устройство паровой машины показано на рисунке 5. Основная ее часть — чугунный цилиндр 1, в котором ходит поршень 2. Рядом с цилиндром расположен парораспределительный механизм. Он состоит из золотниковой коробки, имеющей сообщение с паровым котлом. Кроме котла, коробка посредством отверстия 3 сообщается с конденсатором (в паровозах чаще всего просто через дымовую трубу — с атмосферой) и с цилиндром посредством двух окон 4 и 5. В коробке находится золотник 6, движимый специальным механизмом посредством тяги 7 так, что, когда поршень движется направо (рис. а), левая часть цилиндра через окно 4 сообщается с паровым котлом, а правая — через окно 5 с атмосферой. Свежий пар входит в цилиндр слева, а отработанный пар из правой части цилиндра уходит в атмосферу. Затем, когда поршень движется налево (рис. б), золотник передвигается так, что свежий пар входит в правую часть цилиндра, а отработанный пар из левой части уходит в атмосферу. Пар подается в цилиндр не во все время хода поршня, а только в начале его. После этого благодаря особой форме золотника пар отсекается (перестает подаваться в цилиндр) и работа производится расширяющимся и охлаждающимся паром. Отсечка пара дает большую экономию энергии.
4.2 Двигатели внутреннего сгорания.
4.2.1 Цикл Карно.
Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД и нулевой мощностью.
Цикл Карно назван в честь фразцузского физика Сади Карно, который впервые его исследовал в 1824 году.
Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.
Пусть тепловая машина состоит из нагревателя с температурой TH, холодильника с температурой TX и рабочего тела.
Цикл Карно состоит из четырёх стадий:
1. Изотермическое расширение (на рисунке 6 — процесс A→Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты QH. При этом объём рабочего тела увеличивается.
2. Адиабатическое (изоэнтропическое) расширение (на рисунке 6 — процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника. 3. Изотермическое сжатие (на рисунке 6— процесс В→Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.4. Адиабатическое (изоэнтропическое) сжатие (на рисунке 6— процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.
При изотермических процессах температура остается постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия (поскольку
при δQ = 0). Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия). 4.2.2 Четырехтактный карбюраторный двигатель.
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом:
1. Такт впуска По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение 0.07 - 0.095 МПа, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь .
2. Такт сжатия. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
3. Такт расширения или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ.В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал. При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 -0.75 МПа, а температура до 950 - 1200 С. 4. Такт выпуска . При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
4.2.3 Двухтактный двигатель.
Двухтактные двигатели отличаются от четырехтактных тем, что у них наполнение цилиндров горючей смесью или воздухом осуществляется в начале хода сжатия, а очистка цилиндров от отработавших газов в конце хода расширения, т.е. процессы выпуска и впуска происходят без самостоятельных ходов поршня. Общий процесс для всех типов двухтактных двигателей - продувка, т.е. процесс удаления отработавших газов из цилиндра с помощью потока горючей смеси или воздуха. Поэтому двигатель данного вида имеет компрессор (продувочный насос). Рассмотрим работу двухтактного карбюраторного двигателя с кривошипно-камерной продувкой. У этого типа двигателей отсутствуют клапаны, их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Через эти окна цилиндр в определенны моменты сообщается с впускным и выпускным трубопроводами и кривошипной камерой (картер), которая не имеет непосредственного сообщения с атмосферой. Цилиндр в средней части имеет три окна: впускное, выпускное 6 и продувочное, которое сообщается клапаном скривошипной камерой двигателя.
Рабочий цикл в двигателе осуществляется за два такта:
1. Такт сжатия . Поршень перемещается от НМТ к ВМТ, перекрывая сначала продувочное, а затем выпускное окно. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере вследствие ее герметичности создается разряжение, под действием которого из карбюратора через открытое впускное окно поступает горючая смесь в кривошипную камеру.