Смекни!
smekni.com

Разработка электропривода прошивного стана трубопрокатного агрегата (стр. 2 из 7)

кг*м2 − момент инерции шпинделя.
кг*м2;

Масса одного валка может быть определена по формуле:

,

где

м− радиус валка по бочке;

м− высота половины валка (усеченного конуса);

кг/м3− плотность материала валка (ориентировочно);

− радиус валка по основанию;

м,

где

− угол образующей конуса.

кг.

Момент инерции одного валка можно определить по формуле:

кг*м2;

кг*м2;

− момент инерции заготовки при прокатке (суммарный от вращательного и поступательного движения), т.к исходя из условия задания момент инерции прочих элементов кинематической схемы составляет 20% от момента инерции двигателя, а для определения реального момента инерции заготовки недостаточно данных (нет диаметра заготовки);

Н*м/рад− жестокость муфты.
Н*м/рад;

Н*м/рад − жестокость муфты.

Н*м/рад;

Н*м/рад − жестокость шпинделя.

Н*м/рад.

Далее приведем схему с рисунка 3.1 к двухмассовой. Для упрощения записи индекс

ставиться не будет. Имеются ввиду величины, приведенные к скорости двигателя.

;
;

;

Выполним преобразование парциального звена типа А (

) в парциальное звено типа Б:

Н*м/рад;

;

кг*м2;

;

Н*м/рад;

Тогда имеем следующую приведенную трехмассовую расчетную схему:

Рисунок 1.4− Трехмассовая расчетная схема

Опять преобразуем парциальное звено типа А (

) в звено типа Б.

Н*м/рад;

;

;

Тогда получаем следующую двухмассовую расчетную схему:

Рисунок 1.5− Двухмассовая расчетная схема

;

;

Н*м/рад.

1.4 Построение нагрузочной диаграммы и механической характеристики рабочей машины

Механическая характеристика рабочей машины построена в графической части.

В связи с тем, что за цикл работы скорость вращения двигателя, исходя из приведенной выше тахограммы, не изменяется, следовательно не о каких динамических моментах речи быть не может (на данном этапе проектирования). Таким образом нагрузочная диаграмма примет следующий вид:

Рисунок 1.4− Нагрузочная диаграмма


Рисунок 1.5− Тахограмма технологического процесса

2. Анализ и описание системы "электропривод−сеть" и "электропривод−оператор"

Привод прошивного стана трубопрокатного агрегата ввиду довольно большой мощности подключен к промышленной трехфазной сети переменного напряжением 6,3 кВ и стандартной частотой 50 Гц.

Вследствие высоких технологических требований к процессу прокатки, очевидно, что будет применена двухконтурная замкнутая система подчиненного регулирования скорости.

Включаться привод будет один раз в смену, причем пуск будет производиться на холостом ходу. Далее будет происходить автоматический процесс прокатки, не требующий непосредственного участия оператора.

Напряжение на управляемый выпрямитель подается при помощи автоматического выключателя QF1. После этого при помощи кнопки "Пуск", входящей в состав тиристорного преобразователя включаются двигатели. Скорость прокатки задается при помощи задающего резистора.

3. Выбор принципиальных решений

3.1 Построение механической части электропривода

Построение механической части электропривода на данном этапе оставим в соответствии с кинематической схемой, приведенной на рисунке 1.2

3.2 Выбор типа привода вместе со способом регулирования координат. Оценка и сравнение выбранных вариантов

Для выбора наиболее подходящего типа привода при отсутствии надлежащего опыта проектирования как такового воспользуемся методом экспертных оценок. При выборе будем учитывать следующие условия:

Продолжительный режим работы установки (да и двигателя так же);

Ударная нагрузка;

Соответствие двигателя найденному эквивалентному моменту;

Значительная мощность привода.

Анализ нескольких литературных источников и личные измышления дали следующие варианты решения данной задачи:

Двигатель постоянного тока− управляемый выпрямитель (ДПТ−УВ);

Генератор − двигатель (Г−Д);

Асинхронный двигатель− преобразователь частоты (АД−ПЧ);

Синхронный двигатель− преобразователь частоты (СД−ПЧ);

Каскадная схема (К);

Двигатель постоянного тока с реостатом (ДПТ−Р);

Асинхронный двигатель с фазным ротором и реостатом (АДФ−Р)

В связи с тем, что мощность двигателя достаточно велика, то при введении добавочных сопротивлений в силовую цепь будут значительные джоулевы потери, следовательно варианты №6 и №7 сразу отпадают. Оставшиеся варианты рассмотрим более подробно при помощи оценочной диаграммы, представленной на рисунке 3.1:

Подсчет суммарных оценок осуществим по формуле 3.1:

,

где

− суммарная оценка;

− оценка по параметру;

− показатель.

Таким образом после подсчетов оценки распределились следующим образом:

Тип привода.
ДПТ-УВ 150,5
Г-Д 132,5
АД-ПЧ 148
СД-ПЧ 123
К 111

Оценочная диаграмма.

Рисунок 3.1− Оценочная диаграмма


Таблица 3.1- Критерии оценки

q1 Стоимость системы
q2 КПД и cosф системы
q3 Применяемость в промышленности
q4 Наличие литературы и возможность получения сведений о системе, мои знания
q5 Надежность
q6 Перспективность
q7 Массогабаритные показатели
q8 Ремонтопригодность
q9 Эксплуатационные расходы

Таким образом выбираем вариант ДПТ−УВ.

4. Расчет силового электропривода

4.1 Расчет параметров и выбор электродвигателя

Оценить потери в двигателе можно методом средних потерь. Однако для применения этого метода необходимо знать зависимость коэффициента полезного действия двигателя от мощности на валу:

; (4.1)