Смекни!
smekni.com

Разработка электропривода прошивного стана трубопрокатного агрегата (стр. 4 из 7)

Найдем требуемую индуктивность сглаживающего дросселя из условия максимально-допустимых пульсаций тока нагрузки, равных 5%,

:

Максимальный (ориентировочно) угол управления:

рад; (5.7)

Коэффициент для мостовой схемы:

; (5.8),
;

Требуемое индуктивное сопротивление сглаживающего дросселя:


; (5.9)

Гн; (5.10)

Выбираем сглаживающий дроссель СРОС3-800МУХЛ4, его паспортные данные:

Номинальный ток дросселя:

А;

Номинальное сопротивление дросселя:

Гн.

Номинальные потери в меди дросселя:

Вт;

Ставим последовательно 2 дросселя:

.

Суммарная индуктивность сглаживающего дросселя:

Гн; (5.11)

Суммарное активное сопротивление сглаживающего дросселя:

Ом; (5.12)

Эквивалентное сопротивление коммутации:

Ом; (5.13)

Полное эквивалентное сопротивление якорной цепи одного двигателя:

; (5.14)

Ом;

Полная индуктивность якорной цепи (учитывая, что вторичная обмотка трансформатора соединена в треугольник и используется мостовая схема, которая "работает" с линейными напряжениями, а, следовательно, ток нагрузки течет только по одной из обмоток трансформатора):

; (5.15)

Гн;

Определим конструктивный коэффициент двигателя, связывающий противоЭДС и скорость вращения вала двигателя:

; (5.16)

В*с/рад;

Момент на валу, развиваемый электродвигателем:

Н*м; (5.17)

Электромагнитный момент двигателя:

Н*м; (5.18)

Найдем относительную разницу между электромагнитным моментом и моментом на валу:

; (5.19)

Так как разница более 5%, то для дальнейших расчетов найдем конструктивный коэффициент двигателя, связывающий момент на валу двигателя и с током якоря:

Н*м/А; (5.20)

Угол управления при номинальной скорости и номинальной нагрузке:

; (5.21)

рад;

о; (5.22)

Угол управления при минимальной скорости и номинальной нагрузке:

; (5.23)

рад;

о;

Угол управления при номинальной скорости и нагрузке холостого хода:

; (5.24)

рад;

о;

Угол управления при минимальной скорости и минимальной нагрузке:

; (5.25)

рад;

о;

Очевидно, что максимальный угол управления в установившемся режиме соответствует

о, а минимальный угол управления соответствует
о. Найдем граничные токи и соответственно моменты для двух этих углов:

Для

(номинальная скорость и номинальная нагрузка):

; (5.26)

;

А;

Н*м;

Для

(минимальная скорость, нагрузка холостого хода):

; (5.26)

;

А;

Н*м;

Очевидно, что в статике режим прерывистых токов отсутствует при изменении нагрузок и скоростей в пределах, соответствующих заданию.

Далее рассчитаем и построим механические и электромеханические характеристики привода в разомкнутом состоянии:

Зону непрерывных токов в принципе можно было строить по 2-м точкам (

или
) и (
или
) но мы возьмем для наглядность несколько точек.

Зададимся 4-мя значениями момента.

. Тогда скорость двигателя для угла управления
будет равна:

; (5.27)

;

;

Результаты расчетов и графики находятся в приложении А.

Скорость двигателя для угла управления

будет равна:

; (5.28)

;

;

Результаты расчетов и графики находятся так же в приложении А.

Зону прерывистых токов рассчитаем так же по точкам. Зададимся 10-ю значениями

. Значения углов занесены в массив
Расчеты будут производится для тех же двух углов управления, что и предыдущие. Тогда ток, момент и скорость двигателя в зоне прерывистых токов будут равны:

; (5.29)

;

; (5.30)

; (5.31)

;

Результаты расчетов и графики находятся так же в приложении А.

Характеристики замкнутой системы будут абсолютно жесткие, что будет показано далее.

Говоря по-хорошему, сопротивление

в режиме прерывистых токов меньше сопротивления в режиме непрерывных токов на величину сопротивления коммутации. Однако, в этом случае будет разрыв характеристик в граничной точке. Так же, если говорить точнее, то сопротивление коммутации изменяется с изменением тока нагрузки так же как и эквивалентное сопротивление щеточного контакта. Тогда в режиме непрерывных токов с уменьшение тока нагрузки и становится равным нулю при граничном токе. Однако в этом случае двигатель механическая характеристика двигателя в режиме непрерывных токов становится нелинейной. Следовательно, оставим сопротивления
одинаковым в режиме прерывистых и непрерывных токов.