Смекни!
smekni.com

Основные положения синтеза электрических цепей (стр. 1 из 2)

Академия

Кафедра Физики

Реферат

«Основные положения синтеза электрических цепей»

Орёл 2009

Содержание

Введение………………………………………………………………………..3

Понятие о синтезе электрических цепей……………………………………..4

Условия физической реализуемости передаточных функций……………...4

Этапы решения задачи синтеза ЭЦ…………………………………………...7

Методы аппроксимации заданных характеристик…………………………..9

Литература…………………………………………………………………….16

Введение

Важнейшей составной частью проектирования систем передачи и обработки информации, а также их компонентов, является задача синтеза, под которым понимают построение цепей с заданными свойствами.

Главное в задачах синтеза, непременно подлежащее исполнению, состоит в том, что проектируемая цепь должна воспроизводить с необходимой точностью одну или несколько заданных характеристик.

Понятие о синтезе электрических цепей

Приближенное описание требуемых свойств с помощью математических уравнений, функций, алгоритмов и т.д. в дальнейшем будем называть математической моделью.

Если по ней можно построить электрическую схему, то такую модель называют удовлетворяющей условиям физической реализуемости (УФР) или осуществимости (УФО).

Отметим также тот факт, что одной и той же математической моделью, удовлетворяющей УФР, могут быть поставлены в точное соответствие не одна, а множество схем.

Очевидно, что формулирования УФР для той или иной математической модели не представляются возможным без знания свойств функций линейных электрических цепей. В задачах анализа и синтеза ЛРТУ чаще других используются физически осуществимые математические модели в виде:

- операторных передаточных функций [Т(p),Z(p),Y(p)];

- комплексных передаточных функций [T(jω), АЧХ, ФЧХ];

- временных характеристик [h(t), g(t)].

Рассмотрим свойства лишь некоторых из них, которые в наибольшей мере используются в задачах синтеза ТЭЦ.

Условия физической реализуемости передаточных функций

а) Свойства операторных передаточных функций.

Перечислим основные свойства операторных передаточных функций и квадрата АЧХ пассивных цепей :

1. Передаточная функция является дробно-рациональной функцией с вещественными коэффициентами. Вещественность коэффициентов объясняется тем, что они определяются элементами схемы.

2. Полюсы передаточных функций располагаются в левой полуплоскости комплексной переменной

. На расположение нулей ограничений нет. Докажем это свойство на примере передаточной функции
. Выберем входное воздействие
или в операторной форме
. Изображение выходного напряжения
в этом случае численно равно
, т.е.

,

где W(p)-полином числителя передаточной функции; А1, А2,… Аm-коэффициенты разложения дробно-рациональной функции на сумму простых дробей. Перейдем от изображения к оригиналу

:

(1)

где в общем случае

.

В пассивных и устойчивых активных четырёхполюсниках колебания на выходе четырёхполюсника после прекращения воздействия должны иметь затухающий характер. Это означает, что вещественные части полюсов

должны быть отрицательными, т.е. полюсы должны находиться в левой полуплоскости переменной p.

3. Степени полиномов числителей передаточной функции и квадрата АЧХ не превышают степеней полиномов знаменателей , т.е.

. Если бы это свойство не выполнялось, то на бесконечно больших частотах АЧХ принимало бы бесконечно большое значение (т.к. числитель рос бы с увеличением частоты быстрее знаменателя), т.е. цепь обладала бесконечным усилением, что противоречит физическому смыслу.

Итак, будем считать, что ОПФ соответствует УФР, если Т(р) имеет:

- дробно-рациональную математическую конструкцию (

);

- вещественные коэффициенты ;

- полином знаменателя – полином Гурвица V(p).

б) свойства комплексных передаточных функций.

Из формулы (1) при Р=jω получаем

где

– чётные части полинома, есть функции вещественные;

– нечётные части полинома являются функциями мнимыми.

Из полученного выражения находим

;

;

Таким образом, АЧХ является иррациональной четной функцией частоты ω,а ФЧХ – нечётной, трансцендентной функцией.

Для математического моделирования более удобной является функция

поскольку она во всех случаях есть чётная дробно-рациональная функция.

Её свойства вытекают непосредственно из свойств КПФ и АЧХ и позволяют в простом виде выразить УФР соответствующих математических моделей. Итак, для {АЧХ}2 эти условия имеют следующий вид:

- дробно-рациональные математические конструкции;

- вещественность коэффициентов;

- чётность функций числителя и знаменателя;

- {АЧХ}2

0 для всех ω Є(0,
).

Свойства временных характеристик реальных цепей предлагается изучить самостоятельно.

Этапы решения задачи синтеза ЭЦ

Суть задачи синтеза в наиболее общем виде заключается в отыскании цепи, обладающей требуемыми характеристиками или свойствами и имеющей в своём составе элементы только заранее определенных разновидностей, которые в дальнейшем будем именовать элементным базисом.

Предположим, простоты ради, что синтезируемая цепь должна воспроизводить только одну характеристику ξ (х), под которой может подразумеваться АЧХ, характеристика затухания, временные характеристики и т.д.

В качестве аргумента с «х» чаще всего выступают частота или время.

Как правило ξ (х) задаётся либо в виде графика, либо таблицы и, несколько реже ξ в виде аналитического выражения.

Требуемая функция f (х) всегда задаётся в некотором интервале х Є(ха, хb), который принято называть рабочим интервалом.

Проектируемая цепь на этом интервале в идеальном случае должна иметь соответствующую функцию f (х) точно совпадающей с ξ (х).

Однако этого добиться практически невозможно, да и нет в этом необходимости. Важно, чтобы цепью конечной сложности обеспечивалась необходимая точность совпадений функций f (х) и ξ (х).

Математическое расстояние ρ{ξ(x),f(x)} как характеристика близости функций конструируется таким образом, чтобы это было одно единственное положительное число. В теории синтеза ЭЦ обычно используется Чебышевская оценка точности совпадения функций ξ (х) и f (х). (ЧОТС)

При этом математическое расстояние между ξ (х) и f (х) определяется следующим выражением

Геометрический смысл чебышевской оценки точности иллюстрируется графиками (рисунок 1).

В общем случае, при синтезе (проектировании) электрических цепей можно выделить два существенных этапа, которые будут рассмотрены в дальнейшем:

1. Нахождение такой f (х), удовлетворяющей УФР, чтобы в рабочем интервале

, где
- заданная точность воспроизведения. Назовём это этапом аппроксимации.

2. Конструирование по найденной f (х) электрической цепи. Назовём это этапом реализации.

Рисунок 1.

Методы аппроксимации заданных характеристик

В общем случае задача аппроксимации состоит в конструировании функций

, удовлетворяющей УФР в заданном элементном базисе и воспроизводящей с требуемой точностью в рабочем интервале заданную графически (либо таблицей, либо аналитически) зависимость ξ(х), a– варьируемые коэффициенты, значения которых и должны быть найдены в результате решения задачи аппроксимации.

Из-за недостатка времени не представляется возможным осветить все известные методы решения этой задачи. Поэтому остановимся с одной стороны на простейшей из них, имеющих достаточно большую историю их практического применения, а с другой стороны – с современными численными методами, являющимися не только универсальными, но и самыми эффективными при отыскании оптимальных решений с помощью ЭВМ.