Смекни!
smekni.com

Електричні апарати (стр. 7 из 31)

(4.5)

де

– температура поверхні тіла від якого передається теплота;

– температура тіла, до якого передається теплота;

– коефіцієнт тепловіддачі.

Коефіцієнт

– залежить від температури, в’язкості, густини охолоджуючого середовища, температури поверхні, а також від форми поверхні тіла, що охолоджується, і його розташування відносно середовища і поля сил тяжіння. В більшості випадків він визначається емпіричним шляхом. Деякі з емпіричних формул для визначення коефіцієнта
приведені нижче.

Для горизонтальних круглих провідників діаметром 10 – 80 мм:

Для вертикальних площин в трансформаторному маслі:

Для горизонтального циліндра в трансформаторному маслі:

Теплопередача сильно нагрітих тіл здійснюється шляхом випромінювання енергії. За законом Стефана Больцмана для абсолютно чорного тіла кількість теплоти, що віддається тілом:

(4.6)

де

– стала Стефана Больцмана,

Сумарна кількість теплоти, яка передається всіма видами теплообміну найбільше залежить від температури. Для розрахунків теплоти, що віддається в оточуюче середовище всіма видами теплопередачі застосовують формулу:

(4.7)

де

– коефіцієнт теплообміну (теплопередачі), що враховує всі види теплопередачі.

5. Теплопередача і нагрів провідників при різних режимах роботи

5.1 Стаціонарний режим нагрівання

Стаціонарність режиму означає, що температура частин апарату вже не зміниться в часі. Практично стаціонарним вважається режим, при якому температура збільшується не більше ніж на 1°C за 1 годину нагрівання. При цьому вся теплота, що виділяється, віддається зовнішньому середовищу.

Застосуємо баланс енергії для опису цього процесу.

На основі закону Джоуля – Ленца:

1)

(5.1)

Це – загальна формула балансу енергії (теплота, що виділяється в наслідок проходження струму I по провіднику з опором R іде на нагрівання провідника та передається оточуючому середовищу).

– питома густина;

– об’єм провідника;

– тепловий потік.

Коли режим стаціонарний, зміна температури дорівнює нулю. Тоді:

2)

(див. формулу 4.7 та 5.1);

3)

(5.2)

4) Якщо струм постійний:

5)

(5.3)

Питомий опір:

Тому:

(5.4)

Коли протікає змінний струм, то величина опору залежить від частоти струму і розташування між собою провідників (поверхневий ефект та ефект близькості), тому замість

треба ставити

де

– коефіцієнт поверхневого ефекту;

– коефіцієнт близькості;

– добавочний коефіцієнт.

Якщо врахувати, що потік проходить через деяку бічну поверхню провідника Sб, то формули запишуться так:

Поскільки

і
то

(5.5)

де

– кінцева температура, дорівнює температурі при номінальному режимі.

5.2 Номінальна сила струму для провідника в повітрі

При струмі, що дорівнює номінальному із (5.5) можна визначити різницю температур

для випадку нагрівання провідника при умові, що температура провідника лишається сталою, відповідає сталій потужності джерела. Із (5.5) отримаємо:

де

– периметр поперечного перерізу провідника.

При постійному струмі питомий опір

– таблична величина, звідси:

(5.6)

При змінному струмі треба враховувати, що

, тому:

(5.7)

– для міді – (6 – 9)·10-4 Вт/см2, а для сталі – (10 – 14)·10-4 Вт/см2.

Номінальна сила струму, на відміну від режиму короткого замикання, не викликає сильного розігріву провідників, і може бути знайдена із формули (5.7), поскільки, втрати на теплопередачу „провідник – оточуюче повітря” в номінальному режимі цілком достатні, щоб при даному температурному коефіцієнті опору провідника практично не змінювати потужність, яка споживається елементом або апаратом.

5.3. Термічна дія струму короткого замикання. Термічна стійкість провідників

При режимі короткого замикання доля енергії, що відводиться від провідника, є невеликою у порівнянні з тією, що виділяється у провіднику. Відбувається адіабатний процес. Вся кількість теплоти іде на збільшення температури провідника.

Запишемо баланс енергії для цього випадку:

1)

2)

3)

де

– початкова температура;

– кінцева температура.

(5.8)

Критерієм термічної стійкості електричних апаратів при проходженні струму короткого замикання є величина

. Як видно із формули (5.8), вона залежить від фізичних властивостей матеріалу, геометрії та допустимої температури нагрівання.

Термічна дія струму короткого замикання проявляється в нагріванні провідників до високих температур. Це є небезпечним також і для ізоляції, на якій кріпляться провідники. (Наприклад, внаслідок великих температурних перепадів між поверхнею ізоляції, що знаходиться в контакті з провідником і протилежною стороною ізолятора. Ізолятор, як правило – хороший тепло ізолятор. Тому перепад досягає значної величини).

Якщо струм короткого замикання змінний, то треба врахувати вплив поверхневого ефекту та ефекту близькості на величину

. Крім того, треба пам’ятати, що під струмом, який стоїть в даній формулі, розуміють діюче значення струму короткого замикання. При постійному
треба підставляти в дану формулу стаціонарне значення струму КЗ.