Смекни!
smekni.com

Техническая механика (стр. 1 из 2)

Задача 1

Дано:
,
,
. Найти:
,
.
Рис. 1

Решение:

1. Решим задачу аналитически. Для этого рассмотрим равновесие шара 1. На него действует реакция N опорной поверхности А, перпендикулярная к этой поверхности; сила натяжения Т1 нити и вес Р1 шара 1 (рис. 2).

Рис. 2


Уравнения проекций всех сил, приложенных к шару 1, на оси координат имеют вид:

:
(1)

:
(2)

Из уравнения (1) находим силу натяжения Т1 нити:

Тогда из уравнения (2) определим реакцию N опорной поверхности:

Теперь рассмотрим равновесие шара 2. На него действуют только две силы: сила натяжения Т2 нити и вес Р2 этого шара (рис. 3).

Рис. 3

Поскольку в блоке Д трение отсутствует, получаем

2. Решим задачу графически. Строим силовой треугольник для шара 1. Сумма векторов сил, приложенных к телу, которое находится в равновесии, равна нулю, следовательно, треугольник, составленный из

,
и
должен быть замкнут (рис. 4).

Рис. 4

Определим длины сторон силового треугольника по теореме синусов:

Тогда искомые силы равны:

Задача 2

Дано:
,
,
,
,
. Найти:
,
.
Рис. 5

Решение

1. Рассмотрим равновесие балки АВ. На неё действует равнодействующая Q распределённой на отрезке ЕК нагрузки интенсивности q, приложенная в середине этого отрезка; составляющие XA и YA реакции неподвижного шарнира А; реакция RС стержня ВС, направленная вдоль этого стержня; нагрузка F, приложенная в точке К под углом

; пара сил с моментом М (рис. 6).

Рис. 6

2. Равнодействующая распределенной нагрузки равна:


3. Записываем уравнение моментов сил, приложенных к балке АВ, относительно точки А:

(3)

4. Уравнения проекций всех сил на оси координат имеют вид:

:
, (4)

:
, (5)

Из уравнения (3) находим реакцию RС стержня ВС:

По уравнению (4) вычисляем составляющую XA реакции неподвижного шарнира А:

С учетом этого, из уравнения (5) имеем:

Тогда реакция неподвижного шарнира А равна:


Задача 3

Дано:
,
,
. Найти:
,
,
.
Рис. 7

Решение

Рассмотрим равновесие вала АВ. Силовая схема приведена на рис. 8.

Уравнения проекций сил на координатные оси имеют вид:

:
, (6)

:
, (7)

Рис. 8

Линии действия сил F1, Fr2 XA и XB параллельны оси х, а линия действия силы ZA пересекает ось х, поэтому их моменты относительно этой оси равны нулю.

Аналогично линии действия сил Fr1, Fr2 XA, XB, ZA и ZB пересекают ось у, поэтому их моменты относительно этой оси также равны нулю.

Относительно оси z расположены параллельно линии действия сил ZА, ZB Fr1 и F2, а пересекает ось z линия действия силы XA, поэтому моменты этих сил относительно оси z равны нулю.

Записываем уравнения моментов всех сил системы относительно трёх осей:

:
(8)

:
(9)

:
(10)

Из уравнения (4) получаем, что

Из уравнения (3) находим вертикальную составляющую реакции в точке В:

По уравнению (10), с учетом

, рассчитываем горизонтальную составляющую реакции в точке В:

Из уравнения (6) определяем горизонтальную составляющую реакции в точке А:

Из уравнения (7) имеем


Тогда реакции опор вала в точках А и В соответственно равны:

Задача 4

Дано:
,
,
,
,
.
Найти:
,
,
,
.

Решение