Министерство образования Республики Беларусь
Гомельский государственный дорожно-строительный техникум
Специальность 2-400202
Группа ВТ-21
Пояснительная записка
к курсовому проекту
по предмету
“Теоретические основы электротехники”
КП 2-400202.021.022 ПЗ
Выполнил: Лукашевич Алексей Николаевич
Проверил: Авраменко Светлана Прокофьевна
Гомель 2005
1. Анализ электрического состояния линейных электрических цепей постоянного тока. 5
1.2 Определяем токи во всех ветвях схемы на основе метода контурных токов 6
1.3 Определение токов во всех ветвях схемы на основе метода наложения 8
1.4 Составляем баланс мощностей для заданной схемы.. 12
1.5 Представление результатов расчетов в виде таблицы и их сравнение. 12
1.6 Определение тока во второй ветви методом эквивалентного генератора 12
1.7 Построение потенциальной диаграммы для замкнутого контура, включающего два источника. 14
2 Анализ электрического состояния нелинейных электрических цепей постоянного тока. 15
2.1 Построение ВАХ для заданной схемы (рис.2.0) 15
2.2 Определение на основе ВАХ токов во всех ветвях схемы и напряжений на отдельных элементах. 16
3. Анализ электрического состояния однофазных линейных электрических цепей переменного тока. 17
3.1 Расчет реактивных сопротивлений элементов электрической цепи. 17
3.2 Определение действующих значений токов во всех ветвях электрической цепи. 18
3.3 Составление уравнения мгновенного значения тока источника. 18
4. Анализ электрического состояния трехфазных линейных электрических цепей переменного тока. 20
4.1 Построение схемы замещения электрической цепи соответствующей заданному варианту (рис.4.0) 20
4.2 Расчет реактивных сопротивлений элементов электрической цепи. 20
4.3 Определение действующих значений токов во всех ветвях электрической цепи. 21
4.4 Составление уравнения мгновенного значения тока источника. 21
4.5 Составление баланса активных и реактивных мощностей. 21
5. Исследование переходных процессов в электрических цепях. 24
5.1 Определение постоянной времени τи длительности переходного процесса 24
5.2 Определение тока в цепи и энергии электрического (магнитного) поля при t = 3 τи. 25
5.3 Построение графиков I=f(t); (Uc=f(t)) 25
Целью данного курсового проекта является формирование у учащегося навыков по решению различных типов задач.
Задача анализа электрического состояния цепей постоянного/переменного тока заключается в определении токов в отдельных ветвях, напряжения между двумя любыми узлами цепи или конкретно на отдельном элементе, а также построение необходимых диаграмм. Расчеты производятся различными методами: по I и II закону Кирхгофа, методом наложения, методом эквивалентного генератора, используется метод расчета электрической цепи с помощью комплексных чисел. При этом задаются: конфигурация и параметры цепи, параметры элементов включенных в цепь, а также параметры источников питания. Если цепь содержит хотя бы один нелинейный элемент, то к ней применяется графический метод решения. Если исследуются переходные процессы в электрической цепи, то необходимо знать начальные значения токов на индуктивностях и напряжения на емкостях.
Работа над данным курсовым проектом позволяет решить следующие задачи:
закрепление теоретических знаний, полученных на лекционном курсе;
развитие творческого технического мышления;
усвоение методики выполнения расчетов;
развитие навыков по работе со справочной литературой;
развитие умения составления и оформления пояснительной записки и графической части проекта;
Курсовое проектирование по предмету “Теоретические основы электротехники” является завершающим этапом изучения данного предмета и занимает важное место в процессе подготовки будущего специалиста к работе на производстве.
Схема электрической цепи постоянного тока:
R2 I2 R7
I5 E1,r02 I7
R1
I3 R5
R3 R4 I4 I6
I1 E2,r02
R6
Рис.1.0
Числовые параметры:
E1=30B. r01=3Om. R1=16Om. R3=22Om. R5=43Om R7=55Om.
E2=40B. r02=2Om R2=27Om. R4=33Om. R6=51Om.
I5+I6-I7=0; I5+I6-I7=0;
I7-I1-I2-I4=0; I7-I1-I2-I4=0;
E2-E1=R3I3-(R5+r01) I5+(R6+r02) I6; 10=53I6-46I5+22I3;
E1=R2I2+(R5+r01) I5+R7I7; 0=55I7+27I2+46I5;
0=R4I4-R3I3-R2I2; 0=33I4-22I3-27I2;
0=I1R1-I4R4; 0=16I1-33I4;
Решив данную систему, мы найдем истинные токи в ветвях.
Преобразуем схему (рис.1.0) в эквивалентную (рис.1.1):
IK3 IK2
IK4 R2 R5 E2,r02 R7
R1 R4
IK1
R3 R6
E1,r01
Рис.1.1
Составляем уравнения для 4-х. контуров:
I-й. Контур:
E2-E1=IK1(R6+r02+r01+R5+R3) +IK2(R5+r01) - IK3R3;
II-й. Контур:
E1= IK2(R5+r01+R7+R2) +IK3R2-IK1(R5+r01);
III-й. Контур:
0=IK3(R4+R3+R2) - IK2R2-IK1R3-IK4R4;
IV-й. Контур:
0=IK4(R1+R4) - IK3R4;
Решаем систему:10=121IK1-46IK2-22IK2;
30=128IK2-27IK3-46IK1;
0=82IK3-27IK2-22IK1-33IK4;
0=49IK4-33IK3;
49IK4-33IK3 => 49IK4=33IK3 => IK4=0,67347IK3;
0=59,77549IK3-27IK2-22IK1;
10=121IK1-46IK2-22IK2;
30=128IK2-27IK3-46IK1;0=59,77549IK3-27IK2-22IK1;
IK1=(128IK2-27IK3-30) /46;
10=121((128IK2-27IK3-30) /46) - 46IK2-22IK3 =>
IK2=(93,02174IK3+88,91304) /290,69566;
IK1=(13,95962IK3+9,15046) /46;
0=59,77549IK3-8,63992IK3-8,3583-6,67634IK3-4,37631
12,63461=44,45923IK3 =>
IK3=0,28418 A;
IK4=0, 19139 A;
IK2=0,39680 A;
IK1=0,28516 A;
Вычисляем истинные токи ветвей электрической цепи, выполняя алгебраическое сложение контурных токов, учитывая их направление:
I1=IK4=0, 19139 A.
I2=IK2-IK3=0,11262 A.
I3=IK1-IK3=0,00098 A.
I4=IK3-IK4=0,09279 A.
I5=IK2-IK1=0,11164 A.
I6=IK1=0,28516 A.
I7=IK2= 0,39680 A.
a) Нахождение частных токов при исключении источника питания Е2:
Преобразовываем схему (рис.1.0) в эквивалентные схемы на (рис.1.2), (рис.1.3) и (рис.1.4) без Е2, оставив лишь его внутреннее сопротивление r02:
R2 R7 I/7I/2 I/5 E1,r01
R5R1 I/1
R4 R3 I/3 I/4 I/6R6 r02
Рис.1.2
R2 R7
R5
R14
R3 R602
E1, r01
Рис.1.3
R14=(R1R4)/(R1+R4)=(16*33)/(16+33)=10,77551 Om;
R602=R6+r02=51+2=53 Om;
R214 R7
R5 R23
R314 R602
E1,r01
Рис.1.4
R214=(R2R14) /(R2+R3+R14) =(27*10.7755) /(27+10.7755+22) =4,86719 Om;
R23=(R2R3) /(R2+R3+R14) =(27*22) /(27+22+10.7755) =9,93718 Om;
R314=(R3R14) /(R3+R14+R2) =(22*10.7755) /(22+10.7755+27) =3,96586 Om;
R2147=R214+R7= 4.8672+55=59,86719 Om;
R314602=R314+R602= 3.9659+53=56,96586 Om;
RЭКВ. =R5+R23+(R2147R314602) /(R2147+R314602) +r1= =43+9.9372+(59.8672*56.9659) /(59.8672+56.9659) +3=85,12743 Om;
I/=E1/RЭКВ. = 30/85.1275=0,35241 A.
I/5=I/=0,35241 A.
I/7=I/(R314+R602) /(R214+R7+R314+R602) = =0.35241*(3.96586+53) /(4.86719+55+3.96586+53) =0,17182 A.;
I/602=I/6=I/(R214+R7) /(R214+R7+R314+R602) = =0.35241*(9.93718+55) /(9.93718+55+3.96586+53) =0,18058 A.;
По II закону Кирхгофа находим частный ток (I/14):
I/14R14-I/602R602+I/7R7=0;
I/14=(I/602R602-I/7R7) /R14= (0.18058*53-0.17182*55) /10.77551=0,0111 A.;
U14=I/14R14= 0.0111*10.77551=0,11961 B.;
I/1=U14/R1= 0,11961/16=0,00748 A.;
I/4=U14/R4= 0.11961/33=0,00362 A.;
I/2=I/7-I/14= 0,17182-0,0111=0,16072 A.;
I/3=I/1+I/4+I/6= 0,00748+0,00362+0,18058=0, 19168 A.;
b) Нахождение частных токов при исключении источника питания Е1:
Преобразуем схему (рис.1.0) в эквивалентные схемы на (рис.1.5), (рис.1.6) и (рис.1.7) без Е1, оставив лишь его внутреннее сопротивление r01:
R2
I//5 R7 I//7
R5 r01
R1 I//1
R3 I//3 I//4 I//6
R4
R6 E2,r02
Рис.1.5