Смекни!
smekni.com

Расчет кривошипного механизма (стр. 3 из 4)

аА – ускорение точки А.

- нормальное ускорение точки В относительно точки О2.

- тангенциальное ускорение точки В относительно точки О2.

аО2 – ускорение точки О2, равное 0 так как точка О2 неподвижна.

Решив геометрически систему уравнений будем иметь ускорение точки В.

Определим ускорение точки С, для чего составим два векторных уравнения.

(2.8)

где:

- нормальное ускорение точки С относительно точки В.

- тангенциальное ускорение точки С относительно точки D.

аВ – ускорение точки В.

- кориолисово ускорение, определяется поворотом вектора относительной скорости VССx на 90о в сторону угловой скорости звена 4.

- релятивное (относительное ) ускорение точки Сx, направлено в вдоль звена 5.

Решив геометрически систему уравнений (2.8) будем иметь ускорение точки С.

2.3 Силовой анализ механизма

Силовое исследование механизма проводим в порядке обратном структурному. Исследование будем проводить без учёта сил трения в кинематических парах. Силы тяжести прикладываем к центру масс.

К диаде (2,3) и (4,5) приложим все силы и момент сил, действующие на неё. Сила сопротивления задана графиком и имеет направление, противоположное рабочему ходу исполнительного органа Величину сил инерции определим по формулам:

(2.9)

(2.10)

где: m4 и m5 – массы звеньев 4и5 (кг)

аS4 и (aС=aS5)– ускорение центров масс звеньев (м/с2).

Кроме того на звено 4 действует момент пары сил инерции который имеет направление, противоположно угловому ускорению звена. Его величину определим по формуле:

(2.11)

где: IS4 – осевой момент инерции звена, кг×м2; e4 – угловое ускорение звена, рад/с2.

(2,12)

Для определения силы Ft43 составим условие моментного равновесия звена 4.

(2.13)

Из уравнения (2.13) будем иметь:

(2.14)

Для определения F50 и Fn43 составим векторное уравнение и строим план сил. Уравнение записываем таким образом чтобы неизвестные реакции стояли по краям уравнения. Для удобства сначала записываем силы, действующие на одно звено, а затем все силы, действующие на другое.

(2.15)

Введём масштабный коэффициент плана сил:

(2.16)

F50=520(H);

Fn43=F43=3000(H);

Рассмотрим диаду 2-3.

Определим силы инерции, действующие на звенья.

(2.17)

(2.18)

где: m2 и m3 – массы звеньев 2и3 (кг)

Определим момент пары сил инерции.

Для определения силы Ft21 составим условие моментного равновесия звена 2.

(2.19)

Из уравнения (2.17) будем иметь:

(2.20)

Для определения силы Ft30 составим условие моментного равновесия звена 3.

(2.21)

Из уравнения (2.19) будем иметь:

(2.22)

Для определения Fn30 и Fn21 составим векторное уравнение и строим план сил. Уравнение записываем таким образом чтобы неизвестные реакции стояли по краям уравнения.

(2.23)

Введём масштабный коэффициент плана сил:

Fn30= F30=4400(H); Fn21=F21=3200(Н).

2.4 Определение уравновешивающей силы

Определение уравновешивающей силы проводится двумя методами:

Нахождение уравновешивающего момента непосредственно из уравнений равновесия ведущего звена.

Определение уравновешивающей силы и момента с помощью “рычага” Жуковского.

Определим уравновешивающую силу и её момент по первому методу.

Прикладываем к точке А силу F12 равную по модулю ранее найденной силе F21 но противоположную ей по направлению.

Составим уравнение моментов относительно точки О1.

Мур=F12×hF12×ml (2.24)

Мур=3200×85×0,003=816(Нм)

Определим уравновешивающую силу и её момент с помощью “рычага” Жуковского.

К повёрнутому на 900 плану скоростей в одноимённые точки приложим все силы, действующие на механизм, в том числе и силы инерции. Составим уравнение моментов всех сил относительно полюса плана скоростей с учётом знаков и определим уравновешивающую силу.

Определим расхождение результатов расчёта уравновешивающего момента, полученных выше использованными методами.

(2.25)

Полученная погрешность составляет 1%, что меньше предельно допускаемого значения в 5%.


3.Синтез кинематической схемы планетарного редуктора и построение картины эвольвентного зацепления

3.1 Задание

3.1.1 Модуль зубчатых колёс планетарного механизма: m1= 3 мм

Числа зубьев колёс простой передачи: Z1=15 , Z2=30;

Модуль зубчатых колёс Z1и Z2: m=6 мм;

Все зубчатые колёса должны быть нулевыми. А это значить, что во избежание подреза ножки зуба для колёс с внешним зацеплением принимают Z>17, для колёс с внутренним зацеплением Z>85.

Подберём числа зубьев Z1,Z2,Z3 для зубчатой передачи с передаточным отношением U=nдв/n1=720/62=11,6.

Задаёмся числом зубьев Z1 из ряда Z1=17,18,19,…. Пусть Z1=20. Число зубьев Z3 найдём из выражения:

(3.1)

где: U1H – передаточное отношение планетарной передачи входного колеса к выходному звену (водилу) при неподвижном опорном колесе.

(3.2)

где: Uр – передаточное число одной ступени редуктора.

(3.3)

(3.4)

Из формулы (1.1) найдём Z3.

Условие Z3>Zmin=85 выполняется.

Оси центральных колёс и водила должны совпадать между собой, т.е. должно соблюдаться условие соосности, которое имеет вид:

Z1+2Z2=Z3 (3.5)

Из условия соосности находим Z2.

Z2=(Z3-Z1)/2=(96-20)/2=38

Сателлиты должны быть с таким окружным шагом, чтобы между окружностями вершин соседних сателлитов обеспечивался гарантированный зазор- условие соседства: