Смекни!
smekni.com

Эксплуатация электрооборудования подстанции Новая ООО Энергосервис-Югра (стр. 7 из 9)

Масляные выключатели:

ухудшение состояния основной изоляции, изоляции вводов, шунтирующих конденсаторов;

перегрев контактных соединений аппаратных зажимов, контактов дугогасительных устройств.

Разъединители:

нарушения разъемных контактных соединений, аппаратных зажимов;

трещины в опорно-стержневых изоляторах, дефекты подвесной изоляции.

Вентильные разрядники, ограничители перенапряжений:

обрыв шунтирующих сопротивлений;

дефекты монтажа;

неравномерность распределения напряжения по элементам.

Измерительные трансформаторы напряжения и тока

нарушения наружных и внутренних контактных соединений;

ухудшение внутренней изоляции обмоток, связанное со шламообразованием и другими дефектами.

Кабели

нарушение контактных соединений;

ухудшение изоляции концевых кабельных муфт и кабельных заделок.

Ячейки КРУН, КРУ:

перегревы контактных соединений;

наличие дефектных изоляторов.

3.7 Оценка технического состояния электрооборудования подстанции

3.7.1 Анализ аварийных режимов и отказов оборудования

Аварии на подстанциях–события сравнительно редкие, но чрезвычайно значительные по своим последствиям. Они устраняются в основном действием специальных автоматических устройств, в иных же случаях ликвидируются действиями ОВБ.

Ликвидация аварий ОВБ заключается:

- в выполнении переключений, необходимых для отделения повреждённого оборудования и предупреждения развития аварии;

- в устранении опасности для персонала;

- в локализации и ликвидации очагов возгорания в случае их возникновения;

- в восстановлении в кратчайший срок электроснабжения потребителей;

- в выяснении состояния отключившегося от сети оборудования и принятие мер по включению его в работу или выводу в ремонт.

Причинами неожиданных повреждений оборудования, как правило являются некачественный монтаж и ремонт оборудования (например, отказы выключателей из-за плохой регулировки передаточных механизмов и приводов), неудовлетворительная эксплуатация оборудования, неудовлетворительных уход, например за контактными соединениями, что приводит к их перегреву с последующим разрывом цепи рабочего тока и возникновению К.З., дефекты конструкций и технологий изготовления оборудования (заводские дефекты), естественное старение и форсированные износы изоляции.

Причинами нарушений в работе электроустановок могут быть грозовые и коммутационные перенапряжения, при этом повреждается изоляция трансформаторов, выключателей, разъединителей и другого оборудования. Чрезмерное загрязнение и увлажнение изоляции способствуют её перекрытию и пробою.

Однофазные замыкания на землю в сетях 10-35кВ, сопровождающиеся горением заземляющих дуг (вследствие недостаточной компенсации ёмкостных токов), приводят к перенапряжениям, пробоям изоляции электрических машин и аппаратов, а непосредственное воздействие заземляющих дуг - разрушению изоляторов, расплавлению шин, выгоранию цепей вторичной коммутации в ячейках КРУ и др.

Причины отказов в работе устройств релейной защиты, автоматики и аппаратуры вторичной коммутации следующие:

- неисправности электрических и механических частей реле, нарушение контактных соединений, обрывы жил контрольных кабелей, цепей управления и т.д.;

- неправильный выбор или несвоевременное изменение уставок и характеристик реле;

- ошибка монтажа и дефекты в схемах защиты и автоматики;

- неправильные действия персонала при обслуживании устройств релейной защиты и автоматики.

3.7.2 Дефекты трансформаторов и неисправности электрооборудования

Характерные неисправности электрооборудования, приводящие к отказу или выходу его из строя, могут наблюдаться при проведении работ по их техническому обслуживанию. Проявление неисправностей и их влияния на рабочие свойства электрооборудования и электрических машин, одни и те же физические эффекты могут быть вызваны различными причинами. Это часто не позволяет однозначно определить их неисправность. Истинная причина может быть определена в процессе дефектации с целью ее устранения. Если говорить о неисправностях конкретных видов электрооборудования, то, как правило, эксплуатационный персонал при работе ориентируется на перечень типовых неисправностей и способов их устранения, который содержится в каждом паспорте, поставляемых заводами-изготовителями вместе с самим электрооборудованием.

Анализ отказов и технических нарушений трансформаторов показал, что наиболее частыми повреждениями силовых трансформаторов являлись в обмотках:

-выгорание витков вследствие длительного неотклюячения сквозного тока КЗ на стороне низкого напряжения (ЕН);

-деформации обмотки из-за недостаточной динамической стойкости к токам КЗ;

-увлажнение и загрязнение обмоток вследствие негерметичности трансформатора;

-износ и снижение механической прочности изоляции обмоток;

в магнитопроводе:

-перегрев магнитопровода при образовании короткозамкнутого контура в магнитопроводе;

в системе охлаждения:

-нарушение охлаждения трансформатора;

в устройстве регулировки под напряжением (РПН):

-нарушение контактов, приводящее к искрению, выгоранию контактов;

-механические неисправности РПН из-за износа узлов кинематической схемы;

в прочих узлах:

-нарушение герметичности бака из-за дефектов сальников задвижек;

-перегревы контактных соединений из-за дефектов монтажа;

-течи масла при дефектах прокладок из-за некачественного монтажа, в том числе на вводах;

-увлажнение и загрязнение изоляции негерметичных вводов;

-отложения осадка на внутренней поверхности фарфора и на поверхности внутренней изоляции;

-старение масла в результате окислительных процессов;

-течи масла из-за дефектов монтажа, ремонта и эксплуатации.

Увлажнение и старение изоляции во многом определяет срок службы этого ответственного вида оборудования. Особенно большое влияние на электрическую прочность изоляции и срок ее службы оказывает содержание в ней влаги. Попадая из окружающего воздуха в масло, влага затем диффундирует в твердую изоляцию. При изменении температуры обмоток и масла происходит процесс взаимообмена влагой между маслом и бумажной изоляцией.

Кроме непосредственного снижения электрической прочности твердой изоляции при увлажнении существует опасность выделения влаги в масло при переходных тепловых процессах с образованием пузырьков. Это может также стать причиной снижения электрической прочности конструкции изоляции в целом.

Перегревы винтовой изоляции могут встречаться из-за местных перегревов массивных стальных деталей при перевозбуждении магнитной системы. Перевозбуждение вызывает вытеснение магнитного потока из-за трансформаторной стали в конструкционные стальные детали с наведением в них вихревых токов. Продолжительный повышенный нагрев конструкций опасен для соприкасающейся с ними изоляции.

На повреждаемость и характер дефектов отечественных трансформаторов в последнее время влияют такие особенности эксплуатации, как частные повышения напряжения, вызывающие перевозбуждение, низкие уровни нагрузки, маскирующие возможные местные перегревы, снижение качества профилактического обслуживания трансформаторов.

Основными признаками дефектов, требующими вывода силовых трансформаторов из работы, являются:

-сильный неравномерный шум и потрескивание внутри трансформатора;

-повышенный и постоянно нарастающий нагрев трансформатора при номинальной нагрузке и охлаждении;

-выброс масла из расширителя или разрыв диафрагмы выхлопной трубы;

-течь масла с понижением уровня ниже уровня масломерного стекла;

-резкое изменение цвета масла;

-наличие сколов и трещин на изоляторах;

-сильный нагрев контактов проходных шпилек.

В промежутке между двумя последовательными плановыми ремонтами возможны три состояния оборудования:

-исправное (работоспособное) - отсутствуют какие-либо дефекты оборудования;

-промежуточное - имеются «скрытые» дефекты, не приведшие за этот промежуток к аварийному отказу,

-неработоспособное - выявлен дефект, который исключает возможность дальнейшей эксплуатации.

При отсутствии контроля в этом промежутке проявляются только два состояния: исправное и неработоспособное. В первом случае ремонты выполняются согласно графику ППР, а во втором проводится аварийный ремонт (АР). При использовании диагностики выявляются все три состояния в зависимости от надежности диагностирования возможных дефектов.

По времени развития все дефекты подразделяются на две группы:

-мгновенно развивающиеся дефекты, которые должны устраняться средствами релейной защиты и автоматики (короткое замыкание между обмотками, пробой изоляции под воздействием перенапряжений и др.);

-развивающиеся дефекты, которые должны выявляться средствами непрерывного или периодического контроля (местные повышенные нагревы, повышенный уровень частичных разрядов, подгорание контактов переключающихся устройств и др.).

3.8 Основные направления энергосбережения на подстанции

В соответствии с определенными резервами снижения потерь электроэнергии разрабатывается перечень мероприятий по их снижению:

-отключение в режимах малых нагрузок трансформаторов на подстанции;

-замена провода на перегруженных ВЛ на большее сечение;

-организация совместных рейдов представителей РЭС и Энергосбыта для выявления безучетного потребления и несанкционированного подключения потребителей к сети;

-организация равномерного снятия показаний электросчетчиков строго в установленные сроки;

-проведение работ по составлению и анализу балансов электроэнергии по подстанции, узлам и фидерам, устранение небалансов;

-снижение расхода электроэнергии на собственные нужды; - инвентаризация электросчетчиков расчетного учета;