где данный интеграл (5.3) вычисляется по всему бесконечному пространству, т. е. по координатам х, у, z от –¥ до ¥. Таким образом, условие (5.3) говорит об объективном существовании частицы в пространстве.
Чтобы волновая функция являлась объективной характеристикой состояния микрочастиц, она должна удовлетворять ряду ограничительных условий. Функция Y, характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).
Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Y1, Y2,..., Yn,... то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:
,где Сn (n=1, 2, ...)—произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.
Волновая функция Y, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект. Например, среднее расстояние árñ электрона от ядра вычисляют по формуле
,где интегрирование производится, как и в случае (5.3).
3. (1) Материальная точка массой 7,1 г совершает гармонические колебания с амплитудой 2 см и частотой 5 Гц. Чему равна максимальная возвращающая сила и полная энергия колебаний?
Дано: | СИ | Решение: |
г см Гц | кг м | Силу, действующую на точку, найдем по второму закону Ньютона: , где - ускорение точки, которое получим, взяв производную по времени от скорости: , или . Подставив выражение ускорения в формулу силы, получим . Отсюда максимальное значение силы . Подставив в это уравнение значения всех известных величин, найдем Н Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента времени. Проще всего вычислить полную энергию в момент, когда кинетическая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия колеблющейся точки равна максимальной кинетической энергии: . Максимальную скорость определим из формулы , положив : . Подставив выражение скорости в формулу, найдем . Подставив значения величин в эту формулу и произведя вычисления, получим Дж Ответ: Н, Дж |
Найти: | Н Дж |
4. (11) В вакууме распространяется плоская электромагнитная волна. Амплитуда напряженности магнитного поля волны 0,1 А/м. Определить амплитуду напряженности электрического поля волны и среднюю по времени плотность энергии волны.
Дано: | СИ | Решение: |
В электромагнитной волне векторы и всегда колеблются в одинаковых фазах, причем мгновенные значения Е и Н в любой точке связаны соотношением . Так как наша волна распространяется в вакууме, то , . Откуда имеем . Подставив числовые значения, получим Плотность потока энергии Подставив числовые значения, получим Ответ: , | ||
Найти: |
5. (21) Расстояние между двумя когерентными источниками 0,9 мм, а расстояние от источников до экрана 1,5 м. Источники испускают монохроматический свет с длиной волны 0,6 мкм. Определить число интерференционных полос, приходящихся на 1 см экрана.
Дано: | СИ | Решение: |
мм мкм м см | м м м | Интенсивность в произвольной точке А определяется разностью хода , где , , откуда или . Так как , то , поэтому Положение максимумов: , (m=0, 1, 2….) Положение минимумов: , (m=0, 1, 2….) Так как расстояние между двумя соседними максимумами (минимумами) называется шириной интерференционной полосы и находится как , можно найти сколько интерференционных полос приходится на 1см экрана по формуле . Подставим числовые значения в формулу и получим м Таким образом, число интерференционных полос будет равно Ответ: . |
Найти: |
6. (31) Параллельный пучок света от монохроматического источника (
= 0,5 мкм) падает нормально на диафрагму с круглым отверстием диаметром 1 мм. Темным или светлым будет центр дифракционной картины на экране, находящемся на расстоянии 0,5 м от диафрагмы?