Однако в органических кристаллах радиус экситонов Френкеля обычно мал. В такой ситуации резонансное взаимодействие между молекулами сильно зависит от их ориентации, что приводит к тому, что эффективная масса экситона, вообще говоря, может быть отрицательной или иметь разные знаки для разных направлений. Случай отрицательной эффективной массы показан на рис. 46. Ясно видно, что для некоторого интервала частот ω добавочная поперечная поляритонная волна (волна с волновым вектором к2) имеет отрицательную групповую скорость. Именно эта поперечная волна будет испытывать отрицательное преломление.
На рисунке 4 также показана дисперсия продольных волн, определяемая уравнением (17). Для определенности мы положили ε(ω,k)=εL{ω,k). Волновой вектор продольной волны обозначен через кг. Если Мехс < 0, то продольные волны в этом приближении также имеют отрицательную групповую скорость. В общем случае все три волны (две поперечных и одна продольная) можно возбудить в среде с помощью падающей волны, имеющей соответствующую частоту. Для того чтобы решить задачу об отражении и прохождении волн в этом случае, следует ввести так называемые дополнительные граничные условия (ДГУ), поскольку, очевидно, обычно используемых граничных условий Максвелла будет недостаточно для нахождения амплитуд всех возбужденных волн. Явный вид ДГУ зависит от микроскопической природы экситонов. Для молекулярных кристаллов этот вопрос подробно обсуждается в [7].
В недавней работе [38] проведено численное моделирование отражения и прохождения света через плоскую пластину, сделанную из материала, в котором экситоны имеют отрицательную эффективную массу, Мехс < О (рис. 46). Эти расчеты убедительно показали, что благодаря отрицательному преломлению волн с отрицательной групповой скоростью такая пластина действительно приводит к фокусировке излучения. Результаты численного моделирования [38] также указывают на то, что для экспериментальной реализации такой системы необходим кристалл с большой силой осциллятора экситонного перехода и достаточно слабой диссипацией добавочных поляритонов при частотах ниже частоты экситонного резонанса.
4.2 Гиротропные системы вблизи экситонных переходов
Гиротропные системы хорошо известны благодаря явлениям оптической активности и циркулярного (кругового) дихроизма. Вполне естественно было бы ожидать, что в определенных частотных диапазонах ωв этих системах также могут распространяться поляритоны с отрицательной групповой скоростью. Мы начнем обсуждение, рассматривая частоты в окрестности экситонного резонанса ωL. Добавочные волны в этой области частот в гиротропных кристаллах были рассмотрены Гинзбургом [36]. Поскольку частота перехода соответствует полюсу диэлектрической проницаемости, в этой области удобнее использовать разложение (36) для обратного диэлектрического тензора. Функция, обратная диэлектрической проницаемости, обращается в нуль при частоте, равной частоте перехода. Отсюда ясно, что качественно важно использовать следующий, зависящий от пространственной дисперсии член этого разложения.
Уравнение (36) соответствует материальному уравнению
связывающему поля Е и D, где параметр S(ω) определяет "силу" гиротропии. Соотношение (40) совместно с волновым уравнением для поперечных волн приводят к уравнению
нетривиальные решения которого описывают поперечные поляритоны в рассматриваемой системе. Известно, что эти решения соответствуют волнам с круговой поляризацие.Дисперсия поляритона со(к) определяется из условия обращения в нуль детерми-нантауравнения (41):
или, для волн с различной круговой поляризацией,
Уравнение(42) является уравнением третьего порядка по к2(ω), что приводит при заданной ωк наличию трех волн, которые в некоторых областях спектра могут распространяться в среде. Рисунок 5а иллюстрирует дисперсию поперечных поляритонов, получающуюся из уравнения (42а) при использовании модельной диэлектрической функции ε(ω), заданной уравнением (28), и постоянной б(ω) = б [36].
Легко убедиться в том, что, как и для сред с центром инверсии (см. раздел 4.1), возникающая в обсуждаемом случае дисперсия поляритонов обусловлена специфической зависимостью энергии экситона от волнового вектора к [7, 39]. Для того чтобы убедиться в справедливости сказанного, рассмотрим область частот вблизи резонанса ωL, в которой обратную диэлектрическую проницаемость можно приближенно представить в виде линейной функции
Далее перейдем в уравнении (42а) к пределу с -+ оо (т.е. не будем учитывать запаздывающее взаимодействие между зарядами), тогда
Таким образом, "микроскопическое" происхождение соотношения (42) обусловлено наличием в законе дисперсии экситона линейного по к слагаемого, имеющего разные знаки для экситонов с разной поляризацией.
Линейное поведение (44) представляет собой первые члены в разложении энергии экситона по степеням к в гиротропной среде с параметром гиротропии 5. Впервые линейная зависимость частоты дипольно-активных возбуждений от волнового вектора наблюдались экспериментально в спектрах комбинационного рассеяния на оптических фононах, распространяющихся вдоль оптической оси кристалла кварца [40].
Как ясно видно из рис. 5а, добавочная волна с волновым вектором к3, отвечающая нижней поляритонной ветви, имеет отрицательную групповую скорость.
Кроме того, на той же частоте ω существуют еще две волны с волновыми векторами к1и к2. Для экспериментальной реализации отрицательного преломления волн с волновым вектором к3 нужны материалы с как можно большей силой осциллятора экситонного перехода, большой вращательной способностью и достаточно слабой диссипацией волн при частотах ниже резонансной.
4.3 Гиротропные среды в окрестности частоты продольных колебаний
Отрицательное преломление микроволн в искусственной гиротропной среде недавно было рассмотрено с использованием параметров ε(ω) и µ()ωв работе Пендри [41] для окрестности продольной частоты ω . Наше рассмотрение ведется с применением подхода, основанного на последовательном учете пространственной дисперсии, что позволяет выйти за рамки области низких частот. За деталями мы отсылаем читателя к работе [46].
Поскольку продольная частота соответствует нулю диэлектрической проницаемости ε(ω), в этом случае удобно воспользоваться разложением (35) для диэлектрического тензора. Обращение диэлектрической проницаемости в нуль, ε(ω)= 0, показывает, что следующий член в разложении, учитывающий пространственную дисперсию, качественно важен. Из определения диэлектрической проницаемости (28) видно, что
таким образом, ε(ω) в окрестности ωведет себя как линейная функцияω:
Уравнение (35) в изотропной среде имеет вид
где величину гиротропии определяет параметр λ (ω). Используя уравнение (12), находим, что поля поперечних поляритонов удовлетворяют уравнению
Нетривиальными решениями уравнения (47) являются волны с круговой поляризацией, закон дисперсии которых можно найти из уравнения
где знаки плюс и минус отвечают волнам с разной круговой поляризацией. На рисунке 56 показана дисперсия поперечных поляритонов для частот вблизи ωи выше ω. Кривые получены из уравнения (48) с использованием модельной диэлектрической проницаемости ε(ω) (28).