Смекни!
smekni.com

Физические основы классической механики (стр. 2 из 6)

гдеS0 - постоянная, определяемая из начальных условий.

2. Равномерное движение по окружности. В этом случае скорость меняется только по направлению, то есть

- центростремительное ускорение.
Лекция 2 Динамика материальной точки и поступательного движения твёрдого тела. Закон инерции.
Внешние и внутренние силы. Центр масс. Закон сохранения импульса.

I. Основные понятия

Перемещение тел в пространстве - результат их механического взаимодействия между собой, в результате которого проис­ходит изменение движения тел или их деформация. В качестве мары механического взаимодействия в динамике вводится величина – сила

. Для данного тела сила - внешний фактор, а характер движения зависит и от свойства самого тела - податливости оказываемому на него внешнему воздействию или степени инерции те­ла. Мерой инерции тела является его масса т, зависящая от количества вещества тела.

Таким образом, основными понятиями механики являются: дви­жущаяся материя, пространство и время как формы существования движущейся материи, масса как мера инерции тел, сила как мера механического взаимодействия между телами.Соотношения между этими понятиями определяются законам! движения, которые были сформулированы Ньютоном как обобщение и уточнение опытных фактов.

2. Законы механики

1-й закон. Всякое тело сохраняет состояние покоя или равно­мерного прямолинейного движения, пока внешние воздействиянеизменяют этого состояния. Первый закон заключает в себе закон инерции, а также определение силы какпричины, нарушающей инерциальное состояние тела. Чтобы выразить его математически, Ньютон ввел понятие количества движения или импульса тела:

( 2.1)

тогда

, если

2-й закон.Изменение количества движения пропорционально при­ложенной силе и происходит по направлению действия этой силы. Выбрав единицы измерения m и

так, чтобы коэффициент пропорциональности был равен единице, получаем

или
(2.2)

Если при движении m=const, то

или
(2.3)

В этом случае 2-й закон формулируют так: сила равна произведению массы тела на его ускорение. Этот закон является основным законом динамики и позволяет по заданным силам я начальным условиям находить закон движения тел. 3-й закон. Силы, с которыми два тела действуют друг на друга, равны и направлены в противоположные стороны, т.е.

, (2.4)

Законы Ньютона приобретают конкретный смысл после того, как указаны конкретные силы, действующие на тело. Например, часто в механике движение тел вызывается действием таких сил: сила тяготения

, где r - расстояние между телами,
- гравитационная постоянная; сила тя­жести - сила тяготения вблизи поверхности Земли, P=mg; сила трения
,где k - коэффициент трения, N - сила нормального давления ; cила упругости
, где k - коэффициент упругости (жесткости); x -перемещение тела.

3. Инерциальные системы отсчёта (И.С.О.)

Для описания движения тела необходимо указать систему отсчета. Существует целый ряд систем, в которых выполняются законы Ньютона и для которых верно утверждение, что когда тело приобретает ускорение, можно указать тела, действие кото­рых вызывает это ускорение. Систему отсчета, в которой это утверждение, вытекающее из закона инерции, выполняется, назы­вают инерциальной. Любая С.O., движущаяся с постоянной скоростью (

) относительно инерциальной системы, сама будет инерциальной. Существует бесконечное множество И.С.О., движу­щихся друг относительно друга равномерно и прямолинейно. В та­ких системах: отсчета физические явления выглядят наиболее просто. Всякая система отсчета, движущаяся с ускорением отно­сительно инерциальной, будет неинерциальной. В такой системе отсчета на тело действует сила инерции
, где
- ус­корение системы отсчета, которая не является результатом взаи­модействия тел.

4. Принципы относительности Галилея

Опыт показывает, что во всех инерциальных системах отсчета механические явления протекают одинаково, т.е. в механическом отношении все И.С.О. равноправны. Это утверждение называют принципом относительности Галилея.

5. Закон сохранения импульса

Совокупность взаимодействующих тел называют механической системой. Силы, действующие между телами системы, называют внутренними, а со стороны тел, не включенных в данную систему - внешними. Если действием внешних тел на тела данной сис­темы можно пренебречь, то систему называют замкнутой или изо­лированной. В ней действуют лишь внутренние силы. В такой сис­теме описать движение тел можно без помощи 2-го закона Ньюто­на, т.к. в ней имеются величины, на меняющиеся со временем, т.е. сохраняющиеся. Одной их таких величин является полны им­пульс всех тел системы. Рассмотрим взаимодействие двух материальных точек m1 и m2составляющих замкнутую систему. Движение каждой из них описывается 2-й законом Ньютона:

(2.5)

Т.к. по третьему закону Ньютона

, то из (2.5) полу­чаем:

,откуда
(2.6)

Этот результат и представляет закон сохранения импульса для замкнутой системы.

Полный импульс всех тел замкнутой системы сохраняется (т.е. не меняется со временем).

Нужно помнить, что импульсы отдельных тел при этом могут меняться.

6. Реактивное движение

Закон сохранения импульса лежит в основе реактивного движения. Рассмотрим, например, движение ракеты, где

— ско­рость истечения газов
относитель­но ракеты. Полный импульс системы ракета-газы для моментов времени t1 и t2будет равен:

,

гдеDm - масса вылетевших газов,

- их скорость относительно Земли, тогда
или
(2.7). Из этой формулы следует, ччо отделение газов от ракеты эквивалентно действию на не силы:
, где
- расход топлива. Эту силу называют реактивной. Переходя в (2.7) к дифференциалам, получим

(2.8)

Полученный результат представляет Формулу Циолковского.

7. Центр инерции

Рассмотрим движение произвольной системы материальных точек (Рис. 2.2). Движение каждой из них определяется законом

изменения радиус-вектора
.Центром инерции (центром масс) такой системы зазывается точка (т.С.), радиус-вектор которой равен:

(2.9)

Центр инерции может и не совпадать ни с одним из тел системы, а, например, для двух тел центр инерции делит расстояние меж­ду ними на части, обратно пропорциональные их массам. Вычислим скорость центра инерции:

(2.10)

Числитель этой формулы есть полный импульс

поэтому:

(2.11)

Как видно, между полный импульсом системы тел и скоростью центра инерции такая же связь, как и для материальной т.С. массой

. Таким образом, центр инерции приобретает смысл точки, скорость которой равна скорости движения всей системы как целого. Если
, то система как целое покоится, в то же время отдельные тела системы могут двигаться относительно центра инерции.