Смекни!
smekni.com

Физические основы классической механики (стр. 3 из 6)

Формула (2.11) есть обобщение закона инерции для системы тел: для замкнутой системы

, .поэтому центр инерции такой системы движется равномерно и прямолинейно или покоится.

Лекция 3 Энергия и работа силы. Кинетическая энергия. Силовое поле. Потенциальная энергия, её связь с силой.
Закон сохранения энергии (упругий и неупругий удар).

I. Работа

Количественной характеристикой процесса взаимодействия тел является работа, совершаемая силой А.

Работа есть скалярная величина, равная произведению про­екции силы (на направление перемещения) на величину перемеще­ния точки приложения силы

(3.1)

гдеa - угол между направлением силы и перемещением. Если a<90°. то сила совершает положительную работу (А>0), если a>90°, то А<0; приa=90° сила работы не совершает, oна лишь искривляет траекторию тела.

Если работа совершается переменной силойF=F(S) , во для элементарного перемещения

, а для всего пути

(3.2)

Вычислим для примера работу, совершаемую силой тяжести при движении тела по наклонной плоскости (Рис. 3.1):

,

где h - высота наклонной плоскости. Как видно, работа силы тяжести не зависит от длины пути, а зависит от начального и конечного положений тела. Можно показать, что такой же результат получается для любой криволинейной траектории. Таким же свойством обладает и сила упругости.

Силы, обладающие указанным свойством, называются консервативными или потенциальными.

Для таких сил работа по любому замкнутому контуру равна нулю, или:

(3.3)

Это и есть условие потенциального характера силы.

Работа, совершаемая за единицу временя, называется мощностью:

2. Энергия

В результате совершения работы в окружающих телах происходят определенные изменения - переход одних форм движения материи в другие. Общей количественной мерой различных форм движения материи является физическая величина, которую называют энергией Е.

В физике соответственно различным физическим процессам и взаимодействиям различают механическую энергию; тепловую, электромагнитную, ядерную и т.д.

Энергия может, быть выражена через величины, характеризующие строение и состояние тела. Она является функцией его сос­тояния. Изменение состояния тела, например, его движение, приводит к изменению его энергии, а сам процесс изменения есть результат работы, совершаемой силой, поэтому изменение энергии тела или системы тел определяется работой, совершен­ной приложенными к телу силами:

(3.4)

Механическая энергия состоит из двух величин - кинетической энергии K - энергии движения и потенциальной энергии П - энергии взаимодействия между телами:

(3.5)

3. Кинетическая и потенциальная энергии

Чтобы получить выражение для кинетической энергии подсчитаем работу силы, необходимую для изменения скорости тел от v1 до v2:

Итак, совершенная силой работа равна приращению кинетической энергии тела:

, где
. Потенциальная энергия обусловлена характером взаимодействия между телами, их взаимным расположением. Поэтому вид формулы для потенциальной энергии зависит от конкретного вида силы.

Так, работа силы тяжести, необходимая дня изменения положения тела относительно Земли, равна:

,

где h1 и h2 - начальная и конечная высота тела относительно Земли. Эта работа равна изменению потенциальной энергии тела:

,

т.е. совершенная силой работа равна убыли потенциальной энер­гии тела.

Так как

, то
или
(3.7)

Эта формула, связывающая между собой силу, перемещений тела и соответствующее этому изменение его потенциальной энергии, даёт возможность вычислить потенциальную энергию в отдельном случае.

Вычислим, например, потенциальную энергию силы тяготения

Из (3.7) находим

и
,
есть так называемый нулевой уровень потенциальной энер­гии, который обычно выбирается из условия
, тогда
= 0 и

4. Закон сохранения механической энергии

В изолированной системе кроме полного импульса сохраняю­щейся величиной является и полная механическая энергия.

Так, для двух взаимодействующих материальных точек уравнения движения будут

(3.8)

Под действием сил точки совершают перемещения

;
. Умножив каждое из уравнений (3.8) на соответствую­щее перемещение, получим:

сложив их, полу­чим:

(3.9)

т.к.

, то вместо (3.9) имеем:

или
,

где

- изменение кинетической и потенциальной энергии всех тел системы. Тогда
, (3.10)

Полная энергия изолированной системы есть величина постоянная. Это и есть формулировка закона сохранения энергии.

5. Удар абсолютно упругих и неупругих тел

Под ударом понимают кратковременное столкновение соударяющихся тел.

Прямая, проходящая через точку соприкосновения обоих тел, называется линией удара (Рис. 3.2). Если она проходит через центры масс тел, то удар центральный. Отношение относительных скоростей шаров после удара U к скорости их v до удара называют коэффициентом восстановления:

. Если
, то удар абсолютно неупругий, если
, то удар абсолютно упругий.

При абсолютно неупругом ударе часть механической энергии тел переходит в другие формы энергии (например, в тепловую). В этом случае выполняется лишь закон сохранения импульса, на основании которого и находим скорость шаров после столкновения:

(3.11)

Найдем изменение кинетической энергии шаров, т.е. ту её часть которая перешла во внутреннюю энергию:

(3.12)

При абсолютно, упругом ударе потерь энергии нет, н в этом случае выполняются законы сохранения импульса и энергии:

Решая эти уравнения, находим:

(3.13)

Когда массы соударяющихся тел равны:

, то шары обмени­ваются скоростями:
Лекция 4 Динамика вращательного движения. Моменты силы и импульса относительно центра и оси. Уравнение динамики вращения.
Кинетическая энергия вращения, момент инерции. Закон сохранения момента импульса.

I. Кинематика вращательного движения