Смекни!
smekni.com

Движение тел (стр. 1 из 2)

БИЛЕТ № 3

1. Движение материальной точки в поле тяжести земли описывается уравнениями

. Нарисовать траекторию движения тела
.

РЕШЕНИЕ:

Выразим время через х

T(x)=x/10

Подставим во второе уравнение:

Y(x)=20-4.9*(x/10)2

X 10 20 30 40 0

Y 1.51 0.4 20


2. Диск радиуса

вращается относительнооси, проходящей через центр масс, с угловой скоростью
. К ободу диска прикладывают касательную тормозящую силу
. Масса диска
. Через какой промежуток времени диск остановится?

РЕШЕНИЕ:

Вычислим угловое ускорение В, создаваемое касательной тормозящей силой Fk. Для чего нам необходимо вычислить момент силы Fk:

М=Fk*R

И момент инерции диска:

I=0.5*m*R2

Тогда выведем ускорение (угловое) b:

M=I*b

Выразим время до остановки t2:

W2=b*t2+W0


3. Определить ускорение тел, связанных нерастяжимой, невесомой нитью, перекинутой через невесомый блок,

,
,
, внешняя сила
. (см.рисунок).

РЕШЕНИЕ:

Рассмотрим силы, действующие на каждое тело, беря за положительное направление – направление движения.

Натело 3:

Т2-Ft3 =m3a

T2= m3a+ m3g= m3(a+g)

На тело 2:

Ft2 +T1-T2= m2a

m2g+T1-T2= m2a

T1= m2(a-g)+ m3(a+g)

На тело 1:

Ft1+F-T1= m1a

m3a+F-T1= m1a

m1a+F- m2a+ m2g- m3a- m3g= m1a

m1a+ m2a+ m3a= m1a+F+ m2g+ m3g


4.

Тело массой

соскальзывает без трения с наклонной плоскости, имеющей высоту
. Какую скорость будет иметь тело у подножия наклонной плоскости?

РЕШЕНИЕ:

Так как м0=0, то на оси ОХ на тело действует лишь проекция силы FТ на ось ОХ.

ma=FT*sina

a=

Путь S пройденный телом до конца наклонной плоскости:

S=h/sina

Зная выражение пути равноускоренного движения:

Выразим V:

так как V0=0


5. Полная энергия тела возросла на

. На сколько при этом изменилась его масса?

РЕШЕНИЕ:

Согласно теории относительности полная энергия тела определяется выражением:

E=m*c2 (1)

Где m – релятивистская масса тела, с – скорость света в вакууме (с=3*108 м/c)

Из выражения (1) получаем:

(2)

При увеличении полной энергии тела на DЕ масса тела, согласно (2), возрастает на величину:

Проверим размерность:

Подставим численные значения и произведем вычисления:


6.

Одинаковые по величине заряды q1, q2 и q3 находятся в трех вершинах квадрата. Как направлена сила, действующая на заряд q2 со стороны двух других зарядов? Ответ обосновать.

РЕШЕНИЕ:

Из закона Кулона следует, что разноименные заряды притягиваются. Следовательно FR1,2, действующая со стороны первого заряда на второй заряд, направлена по линии, соединяющей эти два заряда от второго к первому. Аналогично и сила FR2,3 направлена от второго к третьему. Так как заряды q1=q3 и расстояния Sq1q2=Sq2q3,

то по закону Кулона следует, что FR1,2 по модулю равна FR2,3

Используя принцип суперпозиции сил проведем векторное сложение FR1,2 и FR2,3

F= FR1,2 + FR2,3

Таким образом, сила F будет направлена по диагонали квадрата, как показано на рисунке.


7. Незаряженное металлическое тело М, смотри рисунок, внесли в электрическое поле положительного заряда

, а затем разделили на две части
и
. Каким зарядом обладают части тела
и
после их разделения?

РЕШЕНИЕ:

После внесения незаряженного металлического тела М в электрическое поле положительного заряда q, в зону I согласно закону Кулона начнут притягиваться свободные отрицательно заряженные частицы тела М (электроны), а в зону II – положительно заряженные частицы (условно «дырки»). Таким образом после разделения тела М в его I части скопится отрицательный заряд, равный по модулю положительному заряду, скопившемуся в части II.


8. Электростатическое поле создается равномерно заряженной бесконечной плоскостью. Покажите, что это поле является однородным.

РЕШЕНИЕ:

Пусть поверхностная плотность заряда равна s. Очевидно что вектор Е может быть только перпендикулярным заряженной плоскости. Кроме того очевидно, что в симметричных относительно этой плоскости точках вектор Е одинаков по модулю и противоположен по направлению. Такая конфигурация поля подсказывает, что в качестве замкнутой поверхности следует выбрать прямой цилиндр, где предполагается что s больше нуля. Поток сквозь боковую поверхность этого цилиндра равен нулю, и поэтому полный поток через всю поверхность цилиндра будет равным 2*Е*DS, где DS – площадь каждого торца. Согласно теореме Гаусса

2*Е*DS=s*DS,

где s*DS – заряд заключенный внутри цилиндра.

Откуда

Е=s/2*Ео.

Точнее это выражение следует записать так:

Еn=s/2*Eo,

где Еn – проекция вектора Е на нормаль n к заряженной плоскости, причем вектор n направлен от этой плоскости.

Тот факт, что Е не зависит от расстояния до плоскости, означает, что соответствующее электрическое поле является однородным.


9. Из медной проволоки изготовлена четверть окружности радиусом 56 см. По проволоке равномерно распределен заряд с линейной плотностью 0,36 нКл/м. Найдите потенциал в центре окружности.

РЕШЕНИЕ:

Так как заряд линейно распределен по проволоке для нахождения потенциала в центре воспользуемся формулой:

Где s - линейная плотность заряда, dL – элемент проволоки.


10. В электрическом поле, созданном точечным зарядом Q, по силовой линии из точки расположенной на расстоянии r1 от заряда Q в точку, расположенную на расстоянии r2, перемещается отрицательный заряд -q. Найдите приращение потенциальной энергии заряда -q на этом перемещении.

РЕШЕНИЕ:

По определению потенциал – это величина, численно равная потенциальной энергии единичного положительного заряда в данной точке поля. Следовательно потенциальная энергия заряда q2:

Отсюда


11. Два одинаковых элемента с э.д.с. 1,2 В и внутренним сопротивлением 0,5 Ом соединены параллельно. Полученная батарея замкнута на внешнее сопротивление 3,5 Ом. Найдите силу тока во внешней цепи.

РЕШЕНИЕ:

Согласно закону Ома для всей цепи сила тока во внешней цепи:

Где E` - ЭДС батареи элементов,

r` - внутреннее сопротивление батареи, которое равно: