Смекни!
smekni.com

Рассеяние рентгеновских лучей на молекулах фуллерена (стр. 2 из 11)

ma = mg – kd + N(1.12)

Выберем начало координат в точке расположения груза при недеформированной пружине. Ось X направим горизонтально, ось Y –вертикально, т.е. перпендикулярно опоре (см. рис.1.9).

Так как груз движется вдоль опоры по горизонтали, то проекция ускорения на ось Y равна нулю. Тогда сила тяжести полностью компенсируется нормальной реакции опоры

N + mg = 0 (1.13)

Проецирование уравнения движения (1.12) на ось X дает скалярное уравнение:

ma = – kd,(1.14)

где a – горизонтальная проекция ускорения груза, d – проекция вектора деформации пружины.

Иначе говоря, ускорение направлено по горизонтальной оси X и равно

a = – (k/m) d(1.15)

Еще раз заметим, что уравнение (1.15) справедливо и при растяжении, и при сжатии пружины.

Так как начало координат выбрано так, что оно совпадает с концом недеформированной пружины, то проекция деформации совпадает со значением горизонтальной координаты груза x:

a = – (k/m) x (1.16)

По определению проекция ускорения равна второй производной соответствующей координаты по времени. Следовательно, одномерное уравнение движения (1.16) можно переписать в виде

(1.17)

Иначе говоря, проекция ускорения прямо пропорциональна координате, причем коэффициент пропорциональности имеет отрицательный знак.

Уравнение (1.17) является дифференциальным второго порядка, общая теория решения таких уравнений изучается в курсе математического анализа. Однако легко доказать непосредственной подстановкой, что функция гармонических колебаний (1.3) удовлетворяет уравнению (1.17). Как уже было доказано ранее, частота колебаний выражается формулой (1.9).

Амплитуда A и начальная фаза j0 колебаний определяются из начальных условий.

Пусть первоначально груз был смещен вправо от положения равновесия на расстояние d0, а начальная скорость груза равна нулю. Тогда используя функции (1.3) и (1.5), запишем для момента времени t=0 следующие уравнения:

d0 =Acos(j0) (1.18)

0 = -wAsin(j0) (1. 19)

Решением системы (1.18) – (1. 19) являются следующие значения A = d0 и j0= 0.

Для других начальных условий величины A и j0, естественно приобретут другие значения.

Теперь рассмотрим систему, изображенную на рис.1.8. б. На груз в этом случае действуют только две силы: сила тяжести mg и сила упругости F (см. рис.1.10). Ясно, что в положении равновесия эти силы компенсируют друг друга, следовательно, пружина растянута.

Пусть груз несколько смещается по вертикали. Тогда векторное уравнение движение будет иметь вид, аналогичный уравнению (1.12)

ma = mg – kd(1. 20)

причем независимо от направления вертикального смещения (вверх или вниз).

Все векторы в уравнении (1. 20) направлены вертикально, поэтому это уравнение целесообразно спроецировать на вертикальную ось координат. Направим ось вниз, а начало координат выберем в точке, где тело находится в состоянии равновесия (см. рис.1.10).


Рис.1.10. Силы, действующие груз, висящий на пружине.

Спроецировав (1.18) на ось X получим:

a = g – (k/m) d(1.21)

где a – проекция ускорения тела, d – проекция деформации пружины.

Для решения уравнения (1.21) полезно вернуться к положению равновесия груза. Уравнение Ньютона для этого положения имеет вид:

0 = g – (k/m) d0(1.22)

где d0 –деформации пружины при равновесии груза. Следовательно, вектор d0 равен

d0 = mg/k(1.23)

Видно, что в положении равновесия тела пружина действительно растянута, так как вектор d0 направлен параллельно вектору g, т.е. вниз.

Теперь поместим начало координат в точке равновесия груза на пружине, и тогда уравнение (1.21) примет вид:

a = g – (k/m) (x+ d0) (1.24)

где d0 –модуль вектора деформации пружины d0.

Подставив в уравнение (1.24) величину d0, полученную из соотношения (1.23), получим:

a = g – (k/m) (x+ (m/k) g)

или

a = – (k/m) x (1.25)

Полученное уравнение полностью совпадает с уравнением (1.16). Таким образом, тело, изображенное на рис.1.8. б, совершает также гармоническое колебательное движение, описываемое функцией (1.3), как и груз в системе, изображенной на рис.1.8. а. Частота колебаний Отличие заключается лишь в направлении колебаний (вертикальное вместо горизонтального). Но частота колебаний по-прежнему определяется жесткостью пружины и массой груза формулой (1.9).

Характерно, что начальная деформация пружины в системе на рис.1.8. б не влияет на частоту колебаний.

2.1.3. Сложение колебаний

2.1.3.1. Сложение двух гармонических колебаний с одинаковыми амплитудами и частотами

Рассмотрим пример звуковых волн, когда два источника создают волны с одинаковой амплитудами A и частотами ω. На расстоянии от источников установим чувствительную мембрану. Когда волна «пройдёт» расстояние от источника до мембраны, мембрана придёт в колебательное движение. Воздействие каждой из волн на мембрану можно описать следующими соотношениями, воспользовавшись колебательными функциями:

x1(t) = A cos(ωt + φ1),

(1.26)

x2(t) = A cos(ωt + φ2).

Для того, чтобы сосчитать колебание, с которым будет колебаться мембрана, просуммируем функции (1.26):

x(t) = x1 (t) + x2 (t) = A [cos (ωt + φ1) + cos (ωt + φ2)] (1.27)

Выражение, которое находится в скобках, можно записать иначе, воспользовавшись тригонометрической функцией суммы косинусов:

(1.28)

Для того чтобы упростить функцию (1.28), введём новые величины A0 и φ0, удовлетворяющие условию:

A0 =

φ0 =
(1.29)

Подставим в функцию (1.28) выражения (1.29), получим

(1.30)

Таким образом, сумма гармонических колебаний с одинаковыми частотами ω есть гармоническое колебание той же частоты ω. При этом амплитуда суммарного колебания A0 и начальная фаза φ0 определяются соотношениями (1.29).

2.1.3.2. Сложение двух гармонических колебаний с одинаковой частотой, но разными амплитудой и начальной фазой

Теперь рассмотрим такую же ситуацию, изменив в функции (1.26) амплитуды колебаний. У функции x1 (t) заменим амплитуду A на A1, а у функции x2 (t) А на A2. Тогда функции (1.26) запишутся в следующем виде

x1 (t) = A1 cos(ωt + φ1), x2 (t) = A2 cos (ωt + φ2); (1.31)

Найдем сумму гармонических функций (1.31)

x= x1 (t) + x2 (t) = A1 cos(ωt + φ1) + A2 cos (ωt + φ2) (1.32)

Выражение (1.32) можно записать иначе, воспользовавшись тригонометрической функцией косинуса суммы:

x(t) = (A1cos(φ1) + A2cos(φ2)) cos(ωt) – (A1sin(φ1) + A2sin(φ2)) sin(ωt) (1.33)

Для того чтобы упростить функцию (1.33) введём новые величины A0 и φ0, удовлетворяющие условию:

(1.34)

Возведём каждое уравнение системы (1.34) в квадрат и сложим полученные уравнения. Тогда мы получим следующее соотношение для числа A0:

(1.35)

Рассмотрим выражение (1.35). Докажем, что величина под корнем не может быть отрицательной. Так как cos(φ1 – φ2) ≥ –1, значит, это единственная величина, которая может повлиять на знак числа под корнем (A12 > 0, A22 > 0 и 2A1A2 > 0 (из определения амплитуды)). Рассмотрим критический случай (косинус равен минус единице). Под корнем оказывается формула квадрата разности, что является величиной всегда положительной. Если мы начнём постепенно увеличивать косинус, то слагаемое, содержащее косинус тоже начнёт расти, тогда величина, стоящая под корнем не изменит свой знак.

Теперь рассчитаем соотношение для величины φ0, разделив второе уравнение системы (1.34) на первое и вычислив арктангенс:

(1.36)

А теперь подставим в функцию (1.33) значения из системы (1.34)

x = A0(cos(φ0) cosωt – sin(φ0) sinωt) (1.37)

Преобразуя выражение, стоящее в скобках по формуле косинуса суммы, мы получим:

x(t) = A0 cos(ωt + φ0) (1.38)

И опять получилось, что сумма двух гармонических функций вида (1.31) является также гармонической функцией того же вида. Точнее говоря, сложение двух гармонических колебаний с одинаковыми частотами ω представляет собой также гармоническое колебание с той же частотой ω. При этом амплитуда результирующего колебания определяется соотношением (1.35), а начальная фаза – соотношением (1.36).

2.2. Волны

2.2.1. Распространение колебаний в материальной среде

Рассмотрим колебания в материальной среде. Одним из примеров является колебание поплавка на поверхности воды. Если в роли наблюдателя выступит птица, пролетающая над поплавком, то она заметит, что поплавок образует вокруг себя окружности, которые, что удивительно, с течением времени, удаляясь, увеличивает радиус. Но если в роли наблюдателя будет человек, стоящий на берегу, то он увидит «горбы» и «впадины», которые, чередуясь, приближаются к берегу. Это явление называют бегущей волной.


Для того чтобы разобраться в свойствах волны, пренебрежем сопротивлением воздуха, вязкостью воды и воздуха, т.е. диссипативными силами. Тогда механическую энергию капелек воды можно полагать сохраняющейся. В этом случае движение волны схематически можно изобразить так, как показано на рисунке 1, заменив капельки воды пронумерованными шариками. Обозначим за поплавок шарик №1.

Рис. 2.1. Схематичное изображение поперечной волны.


Мы видим, что причиной движения является шарик №1, т.е. поплавок. Он с помощью взаимодействия вовлекает в движение шарик №2, шарик №2 вовлекает №3 шарик, и т.д. Но взаимодействие между частицами происходит не мгновенно, поэтому шарик №2 будет отставать по времени. Также можно заметить, что шарик №13 колеблется так же, как и №1. Тогда можно сделать вывод, что шарик №2 будет отставать от №1 на 1/12 периода.