В металлическом состоянии проводимость нанотрубок очень высока. Оценочно они могут пропускать миллиард ампер на квадратный сантиметр. Медный провод выходит из строя при миллионе ампер на квадратный сантиметр из-за того, что джоулев нагрев приводит к плавлению провода. Одной из причин высокой проводимости углеродных трубок является очень малое количество дефектов, вызывающих рассеяние электронов, а следовательно и очень низкое сопротивление. Поэтому большой ж не нагревает трубку так, как он разогревает медный провод. Этому также способствует высокая теплопроводность нанотрубок. Она почти вдвое превышает теплопроводность алмаза, что означает -- трубки являются очень хорошими проводниками тепла.
Магнитосопротивлением называется явление, в котором электросопротивление вещества меняется при наложении постоянного магнитного поля. Углеродные нанотрубки при низких температурах демонстрируют магниторезистивный эффект. На рис. 5.18 показан график зависимости изменения относительного сопротивления нанотрубки от приложенного магнитного поля при 2,3 К и 0,35 К. Это - отрицательный магниторезистивный эффект, так как сопротивление уменьшается при увеличении магнитного поля, а обратная величина -проводимость G — \/R— увеличивается. Такой эффект является следствием того, что приложенное к трубке магнитное поле приводит к появлению новых энергетических уровней электронов, связанных с их спиральным движением в поле. Оказывается, что для нанотрубок эти уровни, называемые уровнями Ландау, находятся очень близко к наивысшему из заполненных уровней (уровню Ферми). Другими словами, появляется большее количество возможных состояний для увеличения энергии электронов, что повышает проводимость материала.
5.4,4, Колебательные свойства
Атомы в молекуле или ианочастице участвуют в непрерывном тепловом движении. Каждая молекула обладает специфическим набором колебательных движений, называемых нормальными колебательными модами, определяющимися симметрией молекулы. Так, молекула двуокиси углерода С02 со структурой
О = С = О имеет четыре нормальные моды. Две моды связаны с изгибом молекулы в двух взаимно перпендикулярных плоскостях, еще одна, называемая симметричным растяжением, заключается в синфазном удлинении С = О связей. Асимметричное растяжение, заключающееся в противофазном изменении длин С = О связей, при котором одна связь растягивается, в то время как другая сжимается, является четвертой модой. Аналогично, углеродные нанотрубки имеют свои нормальные колебательные моды, две
из которых проиллюстрированы на
рис. 5.19. Одна мода, обозначаемая A,g, состоит в осцилляции диаметра трубки. Другая мода, обозначаемая Е,рсостоит в сплющивании трубки, при котором она сжимается в одном направлении, одновременно расширяясь в перпендикулярном ему, по существу, осциллируя между окружностью и эллипсом. Частоты этих двух мод рамановски активны и зависят от радиуса трубки. На рис. 5.20 показана зависимость частоты моды Algот радиуса трубки, обычно используемая в настоящее время для измерения радиуса нанотрубок.
5.4.5. Механические свойства
Углеродные нанотрубки очень прочны. Если к концу тонкой проволоки, прикрепленной к потолку комнаты, присоединить вес И7, то проволока растянется. Механические напряжения Sв проволоке определяются как отношение нагрузки, или веса, к поперечному сечению А проволоки:
А
Относительная деформация е определяется как отношение удлинения ДХ проволоки к ее длине L:
. =f
где L — длина проволоки перед нагружением. Закон Гука утверждает, что увеличение длины проволоки пропорционально силе, приложенной к концу проволоки.
В более общем виде говорят, что напряжение а пропорционально относительной деформации е:
о=Ее (5.5)
Коэффициент пропорциональности Е — LW/AALназывается модулем Юнга и является свойством конкретного материала, характеризующим его упругость. Чем больше значение модуля Юнга, тем материал менее податлив. Модуль Юнга стали примерно в 30000 раз больше, чем резины. Модуль Юнга углеродных нанотрубок колеблется от 1,28 до 1,8 ТПа. Одинтера-паскаль (ТПа) примерно» J О7 раз больше атмосферного давления. Модуль Юнга стали составляет 0,21 ТПа, что означает - модуль Юнга углеродной нанотрубки почти в десять раз больше, чем у стали. Это подразумевает, что углеродная нанотрубка очень жесткая и трудно сгибаемая. Однако это не совсем так из-за того, что трубка очень тонка. Отклонение пустого цилиндрического стержня длиной L, внутренним радиусом /•,■ и внешним радиусом г0под действием силы F, приложенной к его концу нормально к оси, дается выражением
pi}
D= -— (5.6) 3£/
где / - момент инерции сечения стержня, равный в данном случае л{г* — г*)/4. Так как толщина стенки однослойной нанотрубки составляет примерно 0.34 нм, значение г* — г* очень мало, что отчасти компенсирует большое значение Е.
Углеродная нанотрубка очень упруга при изгибе. Она гнется как соломинка, но не ломается и может распрямиться без повреждений. Большинство материалов ломаются при изгибе из-за присутствия дефектов, таких как дислокации и границы зерен. Так как стенки углеродных нанотрубок имеют мало структурных дефектов, этого не происходит. Другая причина того, что они не ломаются, состоит в том, что углеродные кольца стенок в виде почти правильных шестиугольников при изгибе меняют свою структуру, но не рвутся. Это является уникальным следствием того факта,, что углерод-углеродные связи sp1гибридизиро-ваны и могут перегибридизироваться при изгибе. Степень изменения и коэффициенты s~pсмешивания зависят от того, насколько изогнуты связи.
Разумеется, прочность и жесткость — не одно и то же. Модуль Юнга является мерой жесткости или упругости материала. Предел прочности характеризует необходимое для разрыва напряжение. Предел прочности однослойной углеродной нанотрубки составляет 45 ГПа, в то время как стальные сплавы разрушаются при 2 ГПа. Таким образом, углеродные нанотрубки примерно в 20 раз прочнее стали. Многослойные нанотрубки тоже имеют лучшие, чем у стали, механические характеристики, но они не так высоки, как у однослойных нанотрубок. Например, многослойная нанотрубка диаметром 200 нм имеет предел прочности 0,007 ТПа (7 ГПа) и модуль Юнга 0,6 ТПа.
5.5. Применения углеродных нанотрубок
Необычные свойства углеродных нанотрубок допускают множество возможных применений: от электродов батареек до электронных устройств и армирующих волокон для получения более прочных композитов. В этом разделе будут описаны некоторые потенциальные применения, над которыми уже ведется работа. Однако для реализации этого потенциала необходимо разработать технологию крупномасштабного производства однослойных нанотрубок. Существующие методы синтеза обеспечивают лишь небольшой выход конечного продукта, стоимость которого на сегодня составляет около 1 500$ за грамм (680 000$ за фунт). С другой стороны, разработаны основанные на химическом осаждении методы крупномасштабного производства многослойных нанотрубок стоимостью 60$ за фунт, причем при увеличении спроса ожидается дальнейшее существенное падение этой цифры. Методы, используемые для увеличения масштабов производства многослойных нанотрубок, должны лечь в основу широкомасштабного производства и однослойных нанотрубок. Можно надеяться, что из-за их громадного потенциала использования будут разработаны технологию крупнотоннажного синтеза, что приведет к падению цен до цифр порядка 10$ за фунт.
5.5.1. Полевая эмиссия и экранирование
При приложении небольшого электрического поля вдоль оси нанотрубки с ее концов происходит очень интенсивная эмиссия электронов. Подобные явления называют полевой эмиссией. Этот эффект легко наблюдать, прикладывая небольшое напряжение между двумя параллельными металлическими электродами, на один из которых нанесена композитная паста из нанотрубок. Достаточное количество трубок окажутся перпендикулярными электроду, что позволяет наблюдать полевую эмиссию. Одно из применений этого эффекта состоит в усовершенствовании плоских панельных дисплеев. Мониторы телевизоров и компьютеров используют управляемую электронную пушку для облучения люминесцентного экрана, испускающего свет требуемых цветов. Корейская корпорация Samsung разрабатывает плоский дисплей, использующий электронную эмиссию углеродных нанотрубок. Тонкая пленка нанотрубок помещается на слой с управляющей электроникой и покрывается сверху стеклянной пластиной, покрытой слоем люминофора. Одна японская компания использует эффект электронной эмиссии в осветительных вакуумных лампах, таких же ярких, как и обычные лампы накаливания, но более эффективных и долговечных. Другие исследователи используют эффект при разработке новых способов генерации микроволнового излучения.
Высокая электрическая проводимость углеродных нанотрубок означает, что они будут плохо пропускать электромагнитные волны. Композитный пластик с нанотрубками может оказаться легким материалом, экранирующим электромагнитное излучение. Это очень важный вопрос для военных, развивающих идеи цифрового представления поля боя в системах управления, контроля и связи. Компьютеры и электронные устройства, являющиеся частями такой системы, должны быть защищены от оружия, генерирующего электромагнитные импульсы.
5.5.2. Компьютеры
Недавно была показана возможность конструирования полевых транзисторов, являющихся переключающими элементами в компьютере, на основе полупроводниковых углеродных нанотрубок, соединяющих два золотых электрода. Схематически такое устройство показано на рис. 5.21. При приложении небольшого напряжения к затвору, которым является кремниевая подложка, по нанотрубке между истоком и стоком течет ток. Если ток течет, элемент находится в состоянии «включено», и в состоянии «выключено» - в противном случае. Обнаружено, что небольшое напряжение на затворе может изменить проводимость нанотрубки более чем в 106 раз, что сравнимо со значениями для кремниевых полевых транзисторов. Время переключения такого устройства будет очень маленьким, а возможная тактовая частота оценочно может составить Терагерц, что в 1 ООО раз быстрее существующих процессоров. Золотые исток и сток можно сформировать методами нанолитографии, а диаметр соединяющей их нанотрубки составляет порядка одного нанометра. Такие малые размеры позволят в перспективе поместить на чип большее количество переключателей. Следует особо отметить, что пока такие устройства делаются в лабораторных условиях поштучно, а для использования в приложениях, таких как компьютерные чипы, еще предстоит разработать недорогие способы массового создания подобных элементов на чипе.