Очень важно медленно охлаждать изготовленные таблетки — быстрое охлаждение ведет к потере кислорода. Таким образом, первоначально цикл отжиг-охлаждение будет занимать 20 ч.
При изготовлении понадобится также пресс. Оценка показывает, что нужно развивать усилие в 5ч10 тыс. кг на таблетку диаметром порядка 10 мм, чтобы получить хороший образец, необходимо использовать закалённую сталь для прессования таблеток, иначе таблетки получаться рыхлые и не правильной формы, что также может плохо отразиться на дальнейшей работе.
Стоит обратить внимание также на выбор тигля, в котором отжигается материал. Металлический тигель может реагировать со сверхпроводником, иногда с нежелательными последствиями. К тем лее последствиям могут привести примеси в смеси исходных материалов. Например, 2—3% примеси атомов железа вместо меди ведут к подавлению сверхпроводимости.
8.2 Ход эксперимента и полученные результаты
В процессе подготовки к проведению эксперимента был получен карбонат бария (BaCO3). Для получения этого вещества была проведена химическая реакция
1,13г
М=208г/моль М=82г/моль М=208г/моль
1) Найдем необходимую массу чистого BaCl2
отсюда x=1,35 г.
2) Найдем необходимую массу чистого Na2CO3
отсюда y=0,53 г.
Для протекания реакции необходимы водные растворы данных веществ. Причем концентрация чистого вещества в растворе не должна быть велика, иначе концентрация NaClв полученном растворе может быть велика, (раствор будет насыщенным) и при фильтровании карбоната бария в нем может оказаться примесь кристаллов NaCl. Поэтому для получения карбоната бария необходимое согласно расчетам количество исходных веществ было растворено в воде в отношении 1:10.
Остальные вещества, необходимые для получения сверхпроводящего материала, были взяты в готовом виде.
Для определения температуры внутри печи, в которой производился отжиг, была использована термопара. При ее градуировке было обнаружено, что напряжения на холодных концах термопары соответствует табличным значениям с точностью, достаточной для проведения измерений в данном эксперименте.
Для успешного изготовления сверхпроводящей керамики необходимо, чтобы остывание образца происходило не быстрее, чем со скоростью 100 град/час. При отсутствии напряжения график остывания печи имеет вид
При спекании данных веществ в указанных пропорциях при таких условиях должна происходить следующая реакция
Реально, в связи с недостатком в печи кислорода, протекает реакция
Поэтому, для насыщения образца кислородам необходим второй этап отжига в кислородной среде. Дробные индексы обусловлены электронной конфигурацией иттрия. Это элемент побочной подгруппы и в соединениях он может обладать переменной валентностью. Также возможен вариант протекания реакции, при котором содержание кислорода в изготовленном образце будет несколько меньше ожидаемого. Это не приведет к отсутствию сверхпроводящей фазы у образца, но приведет к уменьшению его критической температуры. Тем не менее, все модификации этой керамики имеют критические температуры порядка азотных. Т.е. сверхпроводимость можно будет наблюдать при охлаждении образца жидким азотом.
При проведении эксперимента была использована схема, приведенная на рисунке. При проведении эксперимента состояния близкое к равновесию, т.е. при котором требуется минимальная регулировка тока в цепи, соответствует значениям I=6А. В результате спекания исходных веществ в тигле образовалось 2 различные фазы. (См. фото)
Было принято решение при дальнейшем изготовлении образца использовать их как по отдельности, так и провести дальнейший эксперимент со смесью полученных порошков. Для успешного прессования полученных образцов требуется давление порядка 4,5 МПа.
При прессование таблеток сразу же возник ряд проблем: при прессовании прессформы не выдерживали приложенного к ним усилия и деформировались, тем самым их нельзя было использовать повторно. Поэтому часто приходилось изготавливать новую форму, постоянно совершенствуя конструкцию. Полученный порошок был разделён на три части, развешен по пакетикам по 2 грамма и отпрессован в таблетки с усилием 5, 7,5 и 10кН.
Предварительно было измерена зависимость сопротивления полученных таблеток от температуры и подсчитан температурный коэффициент. Полученные результаты зависимости сопротивления от температуры представлены в приложении 2. По полученным данным был построен график зависимости сопротивления от температуры.
График зависимости Rот t
Зная зависимость удельного сопротивления от температуры:
с= с0(1+
бt°)можно найти температурный коэффициент б, выразив с из:
R= с l/S
Получим
Полученные данные превышают теоретические, это объясняется большой погрешностью, связанной с качеством полученных образцов.
Для проведения дальнейших экспериментов необходимо отжечь получившиеся таблетки при температуре 950°С с обязательной подачей в печь кислорода.
В данной работе я лишь приподняла завесу над исследованием физики сверхпроводимости. Эту тему можно было бы изучить намного глубже, но к большому сожалению подобное изучение данной темы выходит за рамки данной работы. Остается еще много вопросов, на которые пока не получены ответы.
В 1974 году Л. Купер в своей Нобелевской лекции привел следующие высказывания выдающегося французского математика Анри Пуанкаре: «Ученый должен систематизировать факты. Наука состоит из них подобно тому, как здание состоит из кирпичей. Однако простое нагромождение фактов похоже на науку не более, чем груда камней на дом». От себя Купер добавил: «Из обычных камней можно построить и скромный дом, и великолепный замок. С утилитарной точки зрения и то, и другое служит для ограничения некоторой части пространства с целью предохранить её от дождя и холода. Разница состоит в претензиях и средствах строителей и в искусстве, с которым они воплощают свой замысел. Теория, оперирующая стандартными понятиями, также может быть полезна при решении многих скромных задач. Однако когда мы вступаем в сферу общих концепций и идей, перед нашим взором открывается нечто подобное архитектурным шедеврам с колоннами умопомрачительной высоты и арками дерзкой и почти невероятной ширины. Они сводят во едино данные о магнитном моменте электрона и о явлениях на стыке двух различных металлов при абсолютном нуле, они покрывают расстояние от свойств вещества при экстремально низких температурах до его поведения в недрах звезд, от четности операторов относительно движения времени до особенностей коэффициентов затухания вблизи критической температуры. Говоря об этом, я хотел бы убедить моих коллег – теоретиков, а также и самого себя в том, что, в конечном счете, наша «голубая мечта» должна состоять в построении не только практически полезного, но и эстетически прекрасного здания науки».
По проделанному эксперименту можно сделать вывод о том, что наличие у полученного материала сверхпроводящей фазы зависит от строгого соблюдения температурного режима при обжиге исходных материалов, а также от подачи кислорода в печь при повторном обжиге. Процесс подачи в печь кислорода и насыщение кислородом образца не контролируем физическими методами. В качестве продолжения эксперимента планируется провести второй этап обжига спрессованных таблеток в кислородной среде. После проведения этого этапа, можно будет определить, насколько успешно проведен эксперимент. Для этого необходимо охладить образец жидким азотом и поместить его в магнитное поле постоянного магнита. Если охлажденный образец будет отталкиваться от магнита, то можно будет сделать вывод о том, что наблюдается эффект Мейснера, т.е. образец обладает сверхпроводящими свойствами.
Таким образом, поставленные в данной работе теоретические задачи были реализованы, а решение экспериментальных задач требует дальнейшего продолжения работы.
1. Абрикосов А.А. «Основы теории металлов». Москва «Наука» 1987г.
2. Ашкрофт Н. Мермин Н. «Физика твердого тела» том 2. Москва «Мир». 1979 г.
3. Беднорц Г.И. Мюллер К.А. «Новый подход к исследованию высокотемпературной сверхпроводимости». Открытие высокотемпературной сверхпроводимости. Москва «Знания» 1989г.
4. Брандт Н.Б. «Сверхпроводимость» //Соросовский образовательный журнал. №1 1996г.
5. Бурмин Г. «Штурм абсолютного нуля». Москва «Детская литература» 1989 г.