Смекни!
smekni.com

Физика сверхпроводимости (стр. 4 из 14)

Подсчитали, что при переходе металла из нормального состояния в сверхпроводящее производится некоторая работа. Что, собственно, является источником этой работы? То, что у сверхпроводника энергия ниже, чем у того же металла в нормальном состоянии.

Ясно, что «роскошь» эффекта Мейснера сверхпроводник может себе позволить за счет выигрыша в энергии. Выталкивание магнитного поля будет иметь место до тех пор, пока связанное с этим явлением увеличение энергии компенсируется более эффективным ее уменьшением, связанным с переходом металла в сверхпроводящее состояние. В достаточно магнитных полях энергетически более выгодным оказывается не сверхпроводящее, а нормальное состояние, в котором поле свободно проникает в образец.

2.4 Глубина проникновения. Уравнение Лондонов

В 1935г. физики братья Лондоны предприняли попытку количественного описания электрических и магнитных свойств сверхпроводников. Предложенные ими уравнения имеют для сверхпроводников такое же значение, какое имеет закон Ома для нормальных проводников. Для нормальных проводников плотность тока j пропорциональна напряженности электрического поля Е: j= уЕ (у - электропроводность). Применим закон Ома (I=U/R) к однородному проводнику длиной l и сечением S. Вследствие симметрии формы провода электрическое поле в нем имеет напряженность, равную E=U/l, а плотность тока j=I/S. Подставляя эти выражения в закон Ома, получили El/Js=R, откуда j=E/с, где с-удельное сопротивление проводника, равное с=RS/l, а у=l/с – удельная электропроводность. Связь между плотностью тока и электрическим или магнитным полем для сверхпроводников дается двумя уравнениями Лондонов. Первое уравнение описывает идеальную проводимость: поле ускоряет электрон, движущийся в среде без сопротивления. Второе уравнение отражает эффект Мейснера. Оно описывает затухание магнитного поля в тонком поверхностном слое сверхпроводника и тем самым словно разрушает представление об идеальном диамагнетизме.

Диамагнетизм сверхпроводников – это поверхностный эффект, магнитное поле не проникает в толщу образца. Однако оно не может быть полностью вытолкнуто из своего объема металла, включая его поверхность. Иначе на поверхности магнитное поле скачком уменьшается до нуля. токовый слой не имел бы толщины, и плотность тока была бы бесконечной, что физически невозможно. Следовательно, магнитное поле хоть немного, проникает в проводник. Именно в этом тонком приповерхностном слое и протекают незатухающие токи, которые и экранизируют от влияния внешнего магнитного поля области, удаленные от поверхности. Толщина этого слоя, получившим название глубины проникновения поля л, является одной из важнейших характеристик сверхпроводника.

Теория Лондонов позволила найти зависимость индукции магнитного поля от глубины проникновения: В(х) = В0е-хл . Эта зависимость экспотенциальна. Все металлы имеют разное значение л, но, в общем, глубина проникновения очень мала, порядка нескольких сот ангстрем (Е) (1Е = 10-8см), поэтому и кажется, что массивные образцы ведут себя как идеальные диамагнетики с индукцией В=0.

Глубина проникновения не является постоянной величиной - она зависит от температуры образцов. чем больше температура отличается от критической, тем на меньшую глубину в образец проникает магнитное поле. По мере приближения к температуре перехода магнитное поле все глубже проникает в толщу образца. Пока наконец в самой точке перехода в нормальное состояние не захватит весь объем газа. В близи критической температуры сверхпроводники уже не являются идеальными диэлектриками.

2.5 Сверхпроводники первого рода и второго рода

Сверхпроводники, в зависимости от их поведения во внешнем магнитном поле Н, разделяются на два типа: сверхпроводники 1-го и 2-го рода.

Как указывалось выше, у всех сверхпроводников существует область не очень сильных полей, в которой индукция внутри сверхпроводника равна нулю. В этой области магнитный момент М линейно зависит от Н:

M =−H.

При дальнейшем увеличении поля зависимости Мот Н у сверхпроводников 1-го и 2-го рода принципиально отличаются (рис. 4): у сверхпроводников 1-го рода при критическом значении магнитного поля Нс(поле Нсназывается термодинамическим критическим полем) идеальный диамагнетизм исчезает и образец (на рис. 4 приведены зависимости М от Н для образцов, имеющих форму длинных тонких цилиндров, ориентированных вдоль поля) полностью переходит в нормальное состояние. К сверхпроводникам 1-го рода относятся все чистые сверхпроводящие элементы и некоторые их сплавы стехиометрического состава.

У сверхпроводников 2-го рода линейная зависимость Мот Н нарушается при значении магнитного поля Нс1, называемого первым критическим полем. Далее М монотонно уменьшается и обращается в нуль при Нс2, получившем название 2-го критического поля. В области между Нс1и Нс2средняя магнитная индукция внутри сверхпроводника не равна нулю. Внешнее магнитное поле в этой области начинает проникать внутрь сверхпроводника в виде тонких нитей магнитного потока (рис. 5) — вихрей Абрикосова. Каждый вихрь имеет нормальную (не сверхпроводящую) сердцевину диаметром 2о , через которую проходит магнитное поле. Вокруг сердцевины в слое толщиной л текут вихревые сверхпроводящие токи js, экранирующие области с В=0. Магнитный поток, пронизывающий каждый вихрь, имеет строго определенное значение Ц0 = 2,07 · 10−7 Вб (квант потока).

При увеличении Н число вихрей возрастает, расстояние между ними уменьшается. При Н = Нс2 нормальные сердцевины вихрей соприкасаются и объемная сверхпроводимость исчезает. Состояние, в котором находится сверхпроводник в области Нс1 < H< Hc2, называется смешанным состоянием (оно представляет смесь нормальной и сверхпроводящей фаз).

К сверхпроводникам 2-го рода относятся большое число сплавов и все высокотемпературные сверхпроводники.

2.6 Критическое магнитное поле

Кривые зависимостей критических полей от температуры для сверхпроводников 1-го и 2-го рода изображены на рис. 6а и 6б. Для сверхпроводника 1-го рода кривые Нс(Т) имеют вид парабол. У сверхпроводников 2-го рода в области полей 0 < H < Нс1значения R и В равняются нулю. В полях Нс1 < H < Hc2образец находится в смешанном состоянии (0 < В < µ0H), но при этом сопротивление образца остается равным нулю.

При Hc2объемная сверхпроводимость разрушается, но сохраняется поверхностная сверхпроводимость в тонком слое на поверхности, которая разрушается в поле Нс3 = 1,69 Hc2.

У сверхпроводников 1-го рода Нс(0) (при Т = 0) не превышают 105 А/м.

У сверхпроводников 2-го рода Hc2(0) достигают огромных величин, что позволяет создавать на их основе сверхпроводящие системы для создания сильных магнитных полей в больших объемах без затраты энергии на их поддержание. Hc2(0) имеют следующие значения: у Nb3Sn — 1,7 · 107 А/м; V3Ga - 2 · 107 А/м; Nb3Al - 2,6 · 107 А/м; Nb379(Al73Ge27)21 - 3,4 · 107 А/м; PbMo36S8 - 4,8 · 107 А/м; керамики с Тс = 100 К — более 10

3.Свойства сверхпроводников

3.1 Нулевое сопротивление

Когда же исчезает сопротивление? Ответ на этот вопрос получил Камерлинг-Оннес ещё в 1914г. Он предложил весьма остроумный метод измерения сопротивления. Схема эксперимента выглядела довольно просто. Катушку от свинцового провода опустили в криостат - устройство для проведения опытов при низких температурах. Охлаждаемая гелием катушка находилась в сверхпроводящем состоянии. При этом ток, идущий по катушке, создавал вокруг нее магнитное поле, которое легко обнаруживалось по отклонению магнитной стрелки, расположенной вне криостата. Затем ключ замыкают, так что теперь сверхпроводящая обводка оказалась замкнутой накоротко. Стрелка компаса, однако, оставалось отклоненной, что указывало наличие тока в катушке, уже отсоединенной от источника тока. Наблюдая за стрелкой на протяжении нескольких часов (пока не испариться весь гелий из сосуда), Оннес не заметил ни малейшего изменения в отклонении стрелки.

По результатам опыта Оннес пришел к заключению, что сопротивление сверхпроводящей свинцовой проволоки по меньшей мере в 1011раз меньше её сопротивления в нормальном состоянии. Впоследствии проведения аналогичных опытов, было установлено, что время затухания тока превышает многие годы, и из этого следовало, что удельное сопротивление сверхпроводника меньше чем 1025Ом·м. Сравнив это с удельным сопротивлением меди при комнатной температуре 1,55·10-8Ом·м – разница столь огромна, что можно смело считать: сопротивление сверхпроводника равно нулю, действительно трудно назвать другую наблюдаемую и изменяемую физическую величину, которая обращалась бы в такой же «круглый ноль», как сопротивление проводника при температуре ниже критической.

Вспомним известный из школьного курса физики закон Джоуля – Ленца: при протекании тока I по проводнику с сопротивлением R в нем выделяется тепло. На это расходуется мощность P = I2R. Как ни мало сопротивление металлов, но зачастую и оно ограничивает технические возможности различных устройств. Нагреваются провода, кабели, машины, аппараты, вследствие этого миллионы киловатт электроэнергии буквально выбрасываются на ветер. Нагрев ограничивает пропускную способность электропередач, мощность электрических машин. Так в частности обстоит дело и с электромагнитами. Получение сильных магнитных полей требует больших токов, что приводит к выделению колоссального количества тепла в обмотках электромагнита. А вот сверхпроводящая цепь остается холодной, ток будет циркулировать не затухая – сопротивление равно нулю, потерь электроэнергии нет.