Включение в сверхпроводящее кольцо не одного, а двух джозефсоновских переходов вызывает возникновение новых особенностей макроскопической квантовой интерференции в сверхпроводниках. Наиболее важной из этих особенностей является то, что среднее напряжение между двумя частями такого кольца (см.рис. 9б) V1=V2=Vуже может быть отлично от нуля. Поэтому такая система, двухконтактный интерферометр, может характеризоваться своей ВАХ V(Ie), причем вид ВАХ существенно зависит от величины потока Фе, приложенного к кольцу внешнего магнитного поля. Т.о. здесь квантовая интерференция может наблюдаться и на постоянном токе. При отсутствии транспортного (от внешнего источника) тока Ie через двухконтактный интерферометр имеет место квантование магнитного потока, близкое по своему характеру к тому, что наблюдается в одноконтактном интерферометре.
Рассмотрим теперь ВАХ двухконтактного интерферометра и ее зависимость от Фе. Поскольку джозеф-соновские переходы включены параллельно друг другу по отношению к транспортному току, критический ток интерферометра Ic при отсутствии внешнего магнитного поля равен сумме критических токов джозефсоновских переходов Ic1 и Ic2.
При задании внешнего магнитного поля по кольцу интерферометра будет течь круговой экранирующий ток IM, который в одном из джозефсоновских переходов будет направлен в ту же сторону, что и транспортный ток, а в другом — противоположно транспортному току. Это приводит к тому, что критический ток интерферометра, как и мейсснеровский ток IM, имеет периодическую зависимость (с периодом Фо) от внешнего магнитного потока Фе. ВАХ двухконтактного интерферометра по своему виду близка к ВАХ его джозефсоновских элементов, однако отличается наклоном асимптоты: / = V/R, где R-1 = Rn1-1 + Rn2-1, а также тем, что критический ток интерферометра есть не постоянная величина, а периодическая функция потока внешнего магнитного поля. Поэтому при изменении Фе имеет место также периодическая модуляция всей ВАХ (рис.11). При этом максимальное смещение испытывают участки резистивных ветвей, непосредственно примыкающие к S-ветви ВАХ.
3.8 Сквиды
Если зафиксировать значение транспортного тока через двухконтактный интерферометр на резистивной ветви ВАХ, на участке, непосредственно примыкающем к S-ветви, то есть задать I≥(Ic)max, то среднее напряжение на интерферометре Vбудет периодически изменяться по мере роста (убывания) внешнего магнитного потока (см. рис. 11), то есть будет иметь место преобразование магнитный поток Фе→ напряжение V. Зависимость V(Фе) называется сигнальной характеристикой двухконтактного интерферометра при его использовании в качестве датчика устройства, называемого сквидом постоянного тока. Название "сквид" происходит от английского SQUID: SuperconductingQuantumInterferenceDevice.
Сквид постоянного тока включает в себя также усилитель выходного сигнала датчика и цепь следящей (интегрирующей) обратной связи, посредством которой в кольцо интерферометра задается магнитный поток ФFB, компенсирующий изменение внешнего магнитного потока (Фе+ФFB=const) для фиксации рабочей точки датчика сквида в точке сигнальной характеристики с максимальной крутизной преобразования з = |дV/дФе|. Выходным сигналом сквида в режиме работы с замкнутой обратной связью служит сигнал цепи обратной связи, пропорциональный (с обратным знаком) изменению внешнего потока Фе.
Благодаря очень высокой эффективности преобразования Фе→ Vдвухконтактным интерферометром сквиды постоянного тока представляют собой приборы, имеющие уникально высокую чувствительность к магнитному полю. Поскольку чувствительность сквида определяется, с одной стороны, крутизной преобразования з, а с другой — уровнем внутренних флуктуаций, эффективная мощность которых пропорциональна частотной полосе пропускания прибора Д/, чувствительность таких устройств принято характеризовать минимально обнаружимыми значениями магнитного потока дФе и энергии
, отнесенными к единичной полосе Дf=1Гц. По определению, дЕравна приведенной к входу сквида энергии внутренних флуктуаций W, деленной на полосу пропускания Д/ Например, если V2f — средний квадрат напряжения шумов на выходе сквида, то соответствующая ему энергия шумов, приведенная к входу сквида, W= V2fз-2/2L,и, следовательно:
Лучшие современные сквиды постоянного тока гелиевого уровня охлаждения (T=4,2K) имеют чувствительность по энергии и магнитному потоку соответственно
, где h=6,64 10-34 Дж/Гц—постоянная Планка. Полученное рекордное разрешение по энергии дЕ≈h(при T=0,9K) лишь в 2 раза отличается от квантового предела чувствительности дEq=h/2.Одноконтактные интерферометры позволяют, в свою очередь, создавать на их основе сквиды переменного тока. Поскольку среднее напряжение на одноконтактном интерферометре всегда равно нулю, в качестве датчика используется одноконтактный интерферометр, индуктивно связанный с колебательным контуром, который находится под воздействием внешнего периодического сигнала (сигнала накачки) на частоте, близкой к резонансной частоте контура (см. рис. 9, в). Выходным сигналом датчика является амплитуда (точнее, изменение амплитуды) напряжения на контуре Va, которая представляет собой периодическую функцию внешнего потока Фе. В безгистерезисном режиме работы чувствительность сквида переменного тока может быть близка к указанной выше чувствительности сквидов постоянного тока.
Основные применения сквидов определяются их уникальной чувствительностью. В первую очередь это применение в биологии и медицине: магнитокардиография и магнитоэнцефалография. Т.к. магнитокардиограф на основе сквида позволяет измерять бесконтактным образом кардиограмму сердца ребенка, находящегося в утробе матери, то есть контролировать работу сердца ребенка задолго до его рождения. Современные многоканальные (до 200 каналов) томографы на основе сквидов, обладающие чувствительностью от 2 до 5ФТ/√Гц, позволяют бесконтактным образом получать детализированную информацию о картине магнитного поля и пространственной локализации его источников в мозге человека и животных, низким энерговыделением и малыми временами процессов переключения. Именно эти свойства и позволяют создавать на их основе сверхпроводниковые аналоговые, аналого-цифровые и цифровые устройства, отличающиеся рекордно высокой чувствительностью и высокими значениями рабочих частот.
3.9 Влияние кристаллической решетки
Если в самых общих чертах попробовать себе представить строение твердых тел (так как твердые тела в основном кристаллы, то можно нарисовать следующую картину: огромная совокупность одинаковых атомов или молекул, которые во всех трех измерениях расположены в строгом порядке, образуя кристаллическую решетку.
Эта строгая пространственная периодичность в структуре кристалла – характерная его черта. Конечно в реальном кристалле этот строгий порядок нарушается, и эти нарушения означают наличие дефектов. И ещё одна характеристика кристалла: образующие его атомы между собой взаимодействуют.
Исчезновение электрического сопротивления, экранирование внешнего магнитного поля, скачек теплоемкости при сверхпроводящем фазовом переходе – все эти свойства относятся к электронам. Кристаллическая решетка представляет собой как бы сосуд, емкость, в которую налита электронная «жидкость». И вот на первый взгляд при сверхпроводящем переходе меняется свойство жидкости, а сосуд здесь ни причем.
Оказывается, что это неверно. Действительно, в большинстве случаев сверхпроводящий переход почти не влияет на решетку. Но вот кристаллическая решетка на сверхпроводимость влияет, более того определяет сверхпроводимость, причем исключение из этого закона не обнаружено.
Существует много видов кристаллической решетки. Часто одно и то же вещество может иметь разную кристаллическую решетку, то есть одни и те же атомы могут быть расположены друг относительно друга по разному.
Переход от одного типа решетки к другому происходит при изменении либо температуры, либо давление, либо ещё какого-нибудь параметра. Такой переход, как и возникновение сверхпроводимости и плавление является фазовым. Влияние кристаллической решетки на сверхпроводимость продемонстрировал открытый в 1950г. изотоп – эффект. При замене одного изотопа на другой вид кристаллической решетки не меняется, «электронная жидкость» вообще не затрагивается меняется только сила атомов. Оказалось, что от массы атомов зависит Тс многих сверхпроводников. Чем меньше сила, тем больше Тс. Более того вид этой зависимости позволили утверждать, что Тс пропорциональна частоте колебаний атомов решетки, а это сыграло существенную роль в понимании механизма сверхпроводимости.