Упругие волны (стр. 3 из 5)

Здесь
Функция (3.6) дает отклонение точки с координатами х, у,z в момент времени t. В случае, когда n совпадает сex, kx = k, ky= kz = 0 (и уравнение (3.6) переходит в (2.8). Очень удобна запись уравнения плоской волны в видеx = Re aei (ωt-kr+α)
Знак Re обычно опускают, подразумевая, что берется только вещественная часть соответствующего выражения. Кроме того, вводят комплексное числоâ = aeiα,
которое называют комплексной амплитудой. Модуль этого числа дает амплитуду, а аргумент – начальную фазу волны Таким образом, уравнение плоской незатухающей волны можно представить в виде
x = âei (ωt-kr)
Преимущества такой записи выяснятся в дальнейшем.
§ 4. Волновое уравнение
Уравнение любой волны является решением дифференциального уравнения, называемого волновым. Чтобы установить вид волнового уравнения, сопоставим вторые частные производные по координатам и времени от функции (3.6), описывающей плоскую волну. Продифференцировав эту функцию дважды по каждой из переменных, получим
Сложение производных по координатам дает
Сопоставив эту сумму с производной по времени и заменивk2/ω2через 1/υ2 (см. (2.7)), получим уравнение
Это и есть волновое уравнение. Его можно записать в виде
где Δ – оператор Лапласа.
Легко убедиться в том, что волновому уравнению удовлетворяет не только функция (3.6), но и любая функция вида

Действительно, обозначив выражение, стоящее в скобках в правой части (4.4), через ς, имеемАналогично
Подстановка выражений (4.5) и (4.6) в уравнение (4.2) приводит к выводу, что функция (4.4) удовлетворяет волновому уравнению, если положить υ=ω/k.
Всякая функция, удовлетворяющая уравнению вида (4.2), описывает некоторую волну, причем корень квадратный из величины, обратной коэффициенту при, дает фазовую скоростьэтой волны.
Отметим, что для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид
§ 5. Скорость упругих волн в твердой среде

Пусть в направлении оси х распространяется продольная плоская волна. Выделим в среде цилиндрический объем с площадью основания S и высотой Δx (рис. 5.1). Смещения ξ частиц с разными хв каждый момент времени оказываются различными (см. рис. 1.3, на котором изображено ξ в функции от x). Если основание цилиндра с координатой х имеет в некоторый момент времени смещениеξ, то смещение основания с координатой x+Δxбудет ξ+Δξ. Поэтому рассматриваемый объем деформируется – он получает удлинение (алгебраическая величина,соответствует сжатию цилиндра) или относительное удлинение. Величина дает среднюю деформацию цилиндра. Вследствие того, что ξменяется с изменением х не по линейному закону, истинная деформация в разных сечениях цилиндра будет неодинаковой. Чтобы получить деформацию ε в сечении х, нужно устремить Δx к нулю. Таким образом,


(символ частной производной взят потому, что зависит не толькоот x, но и отt).
Наличие деформации растяжения свидетельствует о существовании нормального напряжения σ, при малых деформациях пропорционального величине деформации. Согласно формуле (14.6) 1-го тома 
(E – модуль Юнга среды). Отметим, что относительная деформация , аследовательно, и напряжение σ в фиксированный момент времени зависят от х (рис. 5.2). Там, где отклонения частиц от положения равновесия максимальны, деформация и напряжение равны нулю. В местах, где частицы проходят через положение равновесия, деформация и напряжение достигают максимального значения, причем положительные и отрицательные деформации (т. е. растяжения и, сжатия) чередуются друг с другом. В соответствии с этим, как ужеотмечалось в §1. продольная волна состоит из чередующихся разрежений и сгущений среды.
Обратимся снова к цилиндрическому объему, изображенному на рис.5.1, и напишем для него уравнение движения. Полагая Δxочень малым, проекцию ускорения на ось x можно считать для всех точек цилиндра одинаковой и равной . Масса цилиндра равна ρSΔx, где ρ – плотность недеформированной среды. Проекция на осьx силы, действующей на цилиндр, равна произведению площади основания цилиндра S на разность нормальных напряжений в сечениях (x+Δx+ξ+Δξ) и (x+ξ):
Значение производной в сечении x+δможно для малых δ представить с большой точностью в виде