УПРУГИЕ ВОЛНЫ
§ 1. Распространение волн в упругой среде
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростьюυ. Процесс распространения колебаний в пространстве называется волной.
Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Упругие поперечные волны могут возникнуть лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.
На рис. 1.1 и 1.2 показаны колебания частиц, положения равновесия которых лежат на оси х. В действительности колеблются не только частицы, расположенные вдоль оси х, а совокупность частиц, заключенных в некотором объеме. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к моменту времениt, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли.
Геометрическое место точек,колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются неподвижными. Волновой фронт все время перемещается.
Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне — множество концентрических сфер.
Рассмотрим случай, когда плоская волна распространяется вдоль оси х. Тогда все точки среды, положения равновесия которых имеют одинаковую координату х (но различные значения координат yиz), колеблются в одинаковой фазе.
λ =υT,
где υ — скорость волны, T — период колебаний. Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющимися с разностью фаз, равной 2p (см. рис. 1.3).
λv =υ.
§ 2. Уравнения плоской и сферической волн
Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, zи времени t:
(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, y, z. Периодичность по времени вытекает из того, что x описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние λ, колеблются одинаковым образом.
Найдем вид функции x, в случае плоской волны, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось х совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси х и, поскольку все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t:x= x(х, t). Пусть колебания точек, лежащих в плоскости х = 0 (рис. 2.1), имеют вид
x(х, t) =a cos (wt +a).
Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х = 0 до этой плоскости, волне требуется время t=x/υ(υ – скорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на t от колебаний частиц в плоскости х= 0, т. е. будут иметь вид
x(х, t) =a cos [ w ( t − t ) +a ] =a cos [ w ( t − x/υ ) +a ].
Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом:
Величина a представляет собой амплитуду волны. Начальная фаза волны a определяется выбором начал отсчета х и t. При рассмотрении одной волны начала отсчета времени и координаты обычно выбираются так, чтобы a была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись пулю, как правило, не удается.
w ( t − x/υ ) +a = const
|
|
Таким образом, скорость распространения волныυ в уравнении (2.2) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью.