Смекни!
smekni.com

Расчет электрических цепей синусоидального тока (стр. 2 из 2)

Определить токи в линейных и нейтральных проводах, полную, активную и реактивную мощность каждой фазы и всей цепи. Построить векторную диаграмму токов и напряжений.

Рис. 3

Решение. Принимаем начальную фазу напряжений

равной нулю. Тогда, учитывая, что
=
В,

В;

В;

В;

Комплексные сопротивления фаз:

Ом;
Ом;
Ом

Линейные комплексные токи:

А

А

А

Комплексный ток нейтрального провода

А.

Действующее значение токов:

= 21.17 А;
= 4.49А;
= 12.7 А;
= 26.18 А.

Определяем полную, активную и реактивную мощности каждой фазы:

ВА

ВА

ВА

Отсюда

Sa=2688.89 ВА; Sb=570.4 ВА; Sс=1613.33 ВА; Рa=0 Вт; Рb=403.33.41 Вт; Рс=0 Вт;

Qa= -2688.89 вар; Qb= -403.33 вар; Qс=1613.33 вар

Полная активная и реактивная мощности всей цепи:

403.33-j1478.89 В·А

Порядок построения векторной диаграмы /рис./следующий.

В выбранном масштабе строим фазные и линейные напряжения, совмещая вектор напряжения

с вещественной осью комплексной плоскости.

В масштабе, выбранном для тока, строим векторы токов

, используя фазовые сдвиги (показательная форма записи) или координаты активной и реактивной составляющей (алгебраическая форма записи).

Геометрическая сумма векторов линейных токов представляет собой вектор тока нейтрального провода.


Задача 4

В трехфазную сеть с напряжением

220 В включен треугольником несимметричный приемник, сопротивления которого равны:
3 Ом;
4 Ом;
15 Ом;
15 Ом;
19 Ом; /рис.4/. Определить токи в линейных проводах, активную и реактивную мощности цепи. Построить векторную диаграмму.

Рис. 4

Решение. Принимаем начальную фазу напряжения равной нулю, т.е. совмещаем вектор его напряжения с вещественной осью комплексной плоскости.

Тогда комплексные линейные напряжения:

В;
В;
В

Комплексные сопротивления фаз приемника:

Ом;
Ом;

Ом

Комплексные фазные токи:

А;

А;

А

Линейные токи находим по первому закону Кирхгофа:

А;

А;

А

Активную и реактивную мощности всей цепи определяем как сумму мощностей отдельных фаз приемника:

ВА

Отсюда

Вт;
вар.

Векторную диаграмму /рис./ строим в такой последовательности. На комплексной плоскости в выбранном масштабе наносим векторы линейных напряжений причем вектор

совмещается с вещественно осью. Выбираем масштаб изображения векторов тока и наносим их на векторную диаграмму напряжений, совмещая начала одноименных векторов напряжения и токов. Углы наклона относительно вещественной оси токов
берем из результатов расчета. Чтобы найти линейные токи
, необходимо к концам векторов
прибавить соответственно векторы
с обратным знаком. Геометрическая сумма каждой пары векторов будет представлять собой векторы линейных токов.

Литература

1. Волынский В.А. и др. Электротехника /Б.А. Волынский, Е.Н. Зейн, В.Е. Шатерников: Учеб. пособие для вузов. – М.: Энергоатомиздат, 2007. – 528 с., ил.

2. Касаткин А.С., Немцов М.В. Электротехника: Учеб. пособие для вузов. – 4-е изд., перераб. – М.: Энергоатомиздат, 2009. – 440 с., ил.