Смекни!
smekni.com

Расчет электрических цепей синусоидального тока (стр. 1 из 2)

КОНТРОЛЬНА РОБОТА

з дисципліни

“Електротехніка в будівництві”


Задача 1

Рассчитать электрическую цепь синусоидального тока с последовательным соединением приемников.

Для схемы, изображенной на рис.1, известно, что U = 110B, R1 = 10Oм, R2 = 10Oм, L2 = 80мГн, С2 = 200 мкФ, R3 = 10Oм.

Определить ток цепи, падение напряжений на элементах цепи, активную, реактивную и полную мощность цепи, коэффициент мощности / cosj/ цепи. Построить топографическую векторную диаграму.

Рис. 1

Решение. Определяем реактивные сопротивления участков цепи:

Ом

Ом

Общее сопротивление цепи:

Ом

Комплексное значение тока в цепи в показательной форме:

А

Если начальная фаза напряжения не задана, удобнее принять ее равной нулю и расположить вектор напряжения совпадающим с вещественной осью комплексной плоскости. В этом случае мнимая составляющая комплекса напряжения также равна нулю:

110 В.

Рассчитываем комплексные значения напряжений на элементах цепи в показательной и алгебраической формах:

В

В

В

В

В

Активную, реактивную и полную мощности цепи определяем из соотношения:

,

где

- сопряженный комплекс тока,

Знак “ + “ перед реактивной мощностью говорит о том, что она имеет индуктивный характер.

Правильность решения проверяем, составив баланс мощностей:

Вт;

113.23 вар.

Активную и реактивную мощности можно найти следующим образом:

110·3.5·cos(-170)=368.54Вт;

110·3.5·sin(-170)=113.23вар,

где j — угол между векторами тока и напряжения.

Проверка баланса напряжений показывает, что задача решена правильно:

В

Угол между током и напряжением определяем, сравнивая комплексы напряжений

и тока
:

В,
А,
-170,
0.956.

При построении векторной диаграммы на комплексной плоскости считаем, что потенциал точки е равен 0. Тогда из точки е, помещенной в начало координат, под углом -170 относительно вещественной оси в выбранном масштабе строим вектор UR3. Конец этого вектора будет определять потенциал точки д. Под углом -1070 к вещественной оси строим вектор UC2 определяя потенциал точки г. Из точки г под углом 730 строим вектор UL2, определяя потенциал точки в. Из точки в строим вектор напряжения UR2, определяя потенциал точки б. Из точки б строим вектор напряжения UR1, определяя потенциал точки а. Конец вектора UR1 должен определять потенциал точки а, которая должна лежать на вещественной оси, а длина отрезка еа в соответствии с выбранным масштабом должна быть равной U=110 В.


Задача 2

Рассчитать электрическую цепь синусоидального тока со смешанным соединением приемников, схема которой изображена на рис. 2. Дано: U = 380B, L0 = 19мГн, R0 = 8Oм, L1 = 25,5мГн, R1 = 6Oм, R2 = 10Oм, С2 = 396 мкФ.

Определить общий ток цепи

и токи в ветвях
и
, напряжения на участках цепи, активную, реактивную и полную мощности, построить потенциальную диаграмму на комплексной плоскости.

Рис. 2

Решение. Определяем реактивные сопротивления цепи:

Ом

Ом

Ом

Выражаем сопротивление ветвей цепи в комплексном виде:

Ом

Ом

Ом

Перевод комплексных чисел в показательную форму не обязателен, но при умножении и делении комплексных чисел показательная форма записи удобнее.

Находим эквивалентное сопротивление параллельных ветвей:

Ом

Схема рассчитываемой цепи теперь имеет вид цепи с последовательным соединением приемников.

Комплексное сопротивление всей цепи:

Ом

Определим ток

в неразветвленной цепи. Для этого выразим приложенное к цепи напряжение
в комплексной форме. Так как в условии задачи начальная фаза напряжения не задана, принимаем ее равной нулю, располагая тем самым вектор напряжения с вещественной осью комплексной плоскости:

А

Определяем комплексное действующее значение на разветвленном участке цепи:

В

Комплексное действующее значение на неразветвленной части цепи

В

Определяем токи в ветвях цепи:

А

А

Вычисляем полную, активную и реактивную мощности цепи:

=

Отсюда

8170.73 В·А;
7291.56 Вт;
3687.01 вар.

Реактивная мощность имеет индуктивный характер, так как положительна. Правильность решения можно проверить, составив баланс мощностей, баланс токов / первый закон Кирхгофа / , баланс напряжений / второй закон Кирхгофа / :

7291.56 Вт;

3687.01 вар.

4.87+j3.9 А.

380 В.

Потенциальную векторную диаграмму построим, начиная с вектора

380 В, совместив его с вещественной осью. Далее построение аналогично построению из предыдущей задачи.

Задача 3

В трехфазную четырехпроводную сеть с линейным напряжением

220 В включен звездой несимметричный приемник, сопротивления которого равны: Xca=6 Ом;

20 Ом;
20 Ом;
10 Ом /рис.3/.