Смекни!
smekni.com

Нелинейные электрические цепи в режиме постоянного тока (стр. 1 из 2)

Академия России

Кафедра Физики

Тема: «Нелинейные электрические цепи в режиме постоянного тока»

Орел-2009


Содержание

Нелинейные резистивные (безинерционные) двухполюсные и четырехполюсные элементы

Анализ нелинейных цепей с двухполюсными элементами

Графоаналитические методы анализа нелинейных цепей

Анализ цепей с четырехполюсными нелинейными элементами

Заключение

Литература


Нелинейные резистивные (безинерционные) двухполюсные и четырехполюсные элементы

Элемент электрической цепи, параметры которого зависят от значений токов и напряжений, называется нелинейным элементом (НЭ). Цепь, схема замещения которой не содержит реактивных элементов, называется безинерционной или резистивной. Термин “безинерционный” обусловлен тем, что в данных цепях переходный процесс заканчивается мгновенно.

При описании любого нового элемента электрической цепи устанавливается функциональная зависимость между напряжениями и токами на его зажимах, т.е. необходимо получит математическую модель элемента. Свойства нелинейных двухполюсных резистивных элементов описываются своей вольтамперной характеристикой (ВАХ), которую можно представить в виде

Для НЭ эта функция является нелинейной, например

,

или

и т.д.

Нелинейный четырехполюсник, как и линейный, описывается двумя уравнениями, которые связывают напряжения и токи на его входе и выходе. При анализе транзисторов часто используется следующая система уравнений:


Графическое изображение уравнений для транзистора (входная и выходная характеристики) в схеме с общим эмиттером показано на рис. 1.1.

Рис. 1.1.

Для резистивных НЭ важным параметром является их сопротивление, которое зависит от того, в какой точке ВАХ оно определяется. Различают два вида сопротивлений: статическое и динамическое. Статическое сопротивление

в рабочей точке А (рис. 1.1) определяется как

Это сопротивление постоянному току, оно характеризуется тангенсом угла наклона прямой, проходящей через рабочую точку А и начало координат.

Под действием напряжения малой амплитуды:

,

ток повторит по форме напряжение:

, т.е.

переменное напряжение

и амплитуда переменного тока
.

Для определения динамического (дифференциального) сопротивления

по выходной характеристике НЭ необходимо выбрать приращение
и
и определить динамическое следующим образом:

.

Это сопротивление представляет собой сопротивление НЭ переменному току малой амплитуды.

Обычно переходят к пределу этих приращений и определяют дифференциальное сопротивление в виде:

Различают нелинейные элементы с монотонной и немонотонной ВАХ. Нелинейные элементы с немонотонной ВАХ имеет падающие участки и называется НЭ с отрицательным сопротивлением. Типичным НЭ с немонотонной ВАХ является тунельный диод (рис. 1.2)


Рис. 1.2.

В заключение отметим, что в теории нелинейных цепей не изучаются устройства НЭ, а используются внешние характеристики (модели) подобно тому, как при изучении теории линейных цепей не рассматривают устройство резисторов, конденсаторов и катушек и пользуются только их математическими моделями с параметрами

и
.

Анализ нелинейных цепей с двухполюсными элементами

Составление уравнений состояния цепи на основании законов Кирхгофа.

По первому закону Кирхгофа записываются уравнения вида:

,

где m– число ветвей, сходящихся в узле.

По второму закону Кирхгофа записываются уравнения вида:

,

где n– число ветвей, входящих в контур.

Если цепь содержит, кроме линейных, также НЭ, то в системе уравнений, описывающей состояние цепи появятся уравнения вида

. Методика составления уравнений состояния цепи на основе законов Кирхгофа остается такой же, как в случае линейных резистивных цепей.

Составим, например, систему уравнений состояния для цепи, схема которой изображена на рис. 1.3. Пусть ВАХ нелинейного элемента определена выражением:

.


Рис. 1.3.

Зададимся положительными направлениями напряжений и токов. Цепь содержит один независимый контур и один независимый узел. Уравнения, записанные по законам Кирхгофа, имеют следующий вид:

К этим уравнениям дописываем уравнение

. Неизвестными в данной системе уравнений являются напряжение
и токи
и
. Всего три неизвестных. Для их отыскания составлено три уравнения. Как видим, процесс составления системы уравнений такой же, как и в случае линейной цепи. Однако процесс решения полученной системы, которая содержит нелинейное уравнение, может существенно затрудниться. Для большинства относительно сложных цепей аналитического решения системы уравнений может и не существовать. Тогда приходится прибегать к численным методам решения.

Составление уравнений состояния цепи методом узловых напряжений.

Рассмотрим в качестве примера схему, изображенную на рис. 1.4. Пусть ВАХ нелинейных элементов описываются выражениями

для НЭ1 и
для элемента НЭ2.

Рис. 1.4.

Приняв узел 2 за базисный, имеем три независимых узла, но уравнения будем составлять для 1 и 4 узлов. Узловое напряжение

известно
. Токи ветвей выражаются через узловые напряжения и следующим образом:

Составим уравнения для узлов 1 и 4 по первому закону Кирхгофа:

Подставив в эти уравнения значения токов, получим:

Уравнения узловых напряжений получены в виде системы двух нелинейных уравнений с двумя неизвестными узловыми напряжениями.

Решить данную систему уравнений можно одним из численных методов (например, известным из математики методом Ньютона-Рафсона). Определив узловые напряжения, можно вычислить токи и напряжения ветвей.


Графоаналитические методы анализа нелинейных цепей

Сущность графоаналитических методов состоит в том, что путем подстановки систему уравнений сводят к системе, состоящей из двух уравнений от двух неизвестных. Потом эти уравнения изображают на графике. Точка пересечения графиков даст искомое решение.

Данные методы используются также в случаях, когда ВАХ нелинейного элемента задана графически и получить аналитическое выражение для нее затруднено (ВАХ описывается сложной функцией).

Для демонстрации графоаналитического метода решим следующую систему уравнений для схемы на рисунке 1.3:


Из второго уравнения выразим ток

и подставим его в третье уравнение. В результате этой операции получим: