Коэффициент теплопередачи определяется по формуле:
При вычислении К необходимо соблюдать следующие правила:
если aг=aв то dср=(dвн+dнар)/2
если aг<aв то dср=dвн
Погрешность расчета не превышает 3%. Коэффициент Rзаг учитывающий загрязнение стенок в ходе эксплуатации теплообменника, снижает обычно коэффициент теплопередачи на 20...30%.Принимаем dср=dвн=0.01.Rзаг=0.
Выбираем материал трубок бронза , тогда из [2] lст=226.785
5. Определение площади поверхности охлаждения
Определение площади поверхности охлаждения производим по основному выражению для теплопередачи:
Q=K×F×Dtср
Откуда F=Q/K×Dtср=2515000/2470.493*74.17=13.725
Остальные размеры теплообменника определяются с учетом правильного устройства подводящих каналов для прохода воды. Скорости теплоносителя в подводящем коллекторе и штуцере должны быть примерно равны. В этом случае их подводящие сечения связаны между собой равенством
Fшт=Fкан=Fотв
-ширина кольцевого коллектора bкол=dшт/4=0.09/4=0.023
-высота кольцевого коллектора h1=1.57×dшт=1.57×0.09=0.141
-высота круглого подхода к трубкам h2=dшт/4Dкож=0.09/4×0.158=0.143
-диаметр наружного кожуха кольцевого канала (коллектора) Dкол=Dкож+2bкол=
=0.158+2×0.023=0.203
Если высота больше половины длины труб, то делают два подводящих штуцера. В нашем случае один.
РАСЧЕТ ТЕПЛОВОЙ ИЗОЛЯЦИИ КОЖУХА ТЕПЛООБМЕННИКА.
Расчет заключается в следующем. Оценивается величина тепловых потерь теплообменника в окружающую среду Qпот. В случае превышения этих потерь по сравнению с допустимымиQпот.доп. приступают к выбору способа тепловой защиты. В нашем случае рекомендуется покрытие кожуха теплообменника слоем теплоизоляционного материала. Выбор марки материала и его толщины dиз осуществляется из условия оптимального сочетания значений коэффициента теплопроводности теплоизоляции и ее толщины - факторов, определяющих массу, стоимость и габариты готовой конструкции теплообменника.
Величину тепловых потерь от неизолированного кожуха теплообменника в окружающую среду с температурой tокр, толщиной стенки стального кожуха dст при известной средней температуре воды tсрв и коэффициенте теплоотдачи aв, вычисленном по формуле (2), можно найти, если известен коэффициент теплоотдачи aокр от кожуха окружающему воздуху.
В зависимости от заданных условий эксплуатации для случая естественной конвекции определим aокр:
-горизонтальное расположение теплообменника
Критерий Нуссельта определяем из соотношений, рекомендованных [5].Следует учесть, что
-
если соблюдается условие: 103<(Gr×Pr)ж<108. Если же (Gr×Рr)ж>109, пользуются критериальным соотношением:
Критерий Грасгофа
-для горизонтального расположения теплообменника,
Параметры окружающего воздуха nж= nв=mв/rв=0.00002188/79.4=0.00001416, Prж=Prв и Prст=0.705 приведены из табл.1 [4] для заданной tокр= 10 °С.
В случае Qпот>Qпот.доп на 5% приступаем к выбору оптимальной тепловой изоляции кожуха теплообменника. В нашем случае Qпот<Qпот.доппоэтому выбор оптимальной тепловой изоляции не проводим.
4. ГИДРАВЛИЧЕСКИИ РАСЧЕТ ТЕПЛООБМЕННИКА
Гидравлический расчет теплообменника необходим, потому что между теплопередачей и потерей давления существует тесная физическая и экономическая связь. Чем больше скорость теплоносителей, тем выше коэффициент теплопередачи и тем компактнее для заданной тепловой производительности теплообменник, а следовательно, меньше капитальные затраты. Но при этом растет сопротивление потоку и возрастают эксплуатационные затраты.
Основной задачей гидромеханического расчета является определение потери давления теплоносителя при прохождении его через аппарат.
Полный перепад давления, необходимый при движении жидкости или газа через теплообменник, определится по формуле:
Т. к Reв>2500, то движение среды турбулентное и тогда
nкан - число подводящих воду каналов (штуцеров).
Местное сопротивление при продольном омывании пучков вдоль оси рассчитывается по формуле [3]:
-для шахматных пучков при b1/dнар<b2/dнар
xмест=(4+6.6×m)×Re-0.28=0.01
Здесь m - число рядов в пучке в направлении движения потока для каналов обычно xмест = 0.01...0.05
Гидравлическое сопротивление подводящих воду каналов должно быть меньше гидравлического сопротивления межтрубного пространства: