Смекни!
smekni.com

Полевой эффект и его применение (стр. 12 из 19)


На рис. 34 построен график уравнения (2.25); сравнение этой кривой с экспериментальными данными, полученными на 24 образцах приборов, показывает, что использованный способ расчета дает вполне удовлетворительные результаты

Тот факт, что у полевого транзистора при некоторых условиях температурный коэффициент тока стока равен нулю, позволяет заключить, что этот прибор может хорошо работать в качестве усилителя постоянного тока.

Существует более удобная форма записи уравнения (2.21), в которой температурный коэффициент полевого транзистора выражен через dVзи/dT при постоянном Iс нас. Эта форма записи удобна, так как на практике принято указывать в качестве параметра усилителя постоянного тока величину изменения входного напряжения, необходимого для поддержания постоянным выходного сигнала. Производная dVзи/dT определяется таким же образом, как и производная в уравнении (2.21), за исключением того, что постоянным предполагается ток h нас, а не напряжение Vзи. Это равносильно тому, что полевой транзистор питается от источника стабильного тока. Алгебраические преобразования предоставляется провести читателю; окончательный результат имеет вид


(2.26)

Графики этого уравнения построены на рис 35, на них представлена зависимость dVзи /dT от Iс нас /Iс нас0, a Vнac служит текущим параметром. Точки пересечения оси абсцисс могут быть получены из уравнения (2.26); например, dVзи /dT = 0 при Vнac = 0,6 в и Iс нас /Iс нас0= 1.

Рис. 35. К решению уравнения (2.26).

При очень малых токах стока температурный коэффициент Vзи приближается к dVнac/dT, равному примерно 2 мв/град.

4.4 Пробивное напряжение

В гл. 1 мы видели, что механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор - канал. Мы видели также, что обратное напряжение диода затвор — канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора, не имеющего технологических дефектов. Если выводы стока и истока поменять местами, то пробивное напряжение почти не изменится. Поскольку для уменьшения тока стока необходимо увеличить обратное напряжение в цепи исток — затвор, то при фиксированном напряжении питания сток — исток .кажущееся напряжение пробоя в области стока должно монотонно уменьшаться вместе с уменьшением тока. Рассмотрим характеристики, изображенные на рис. 30. Когда Vзи=0, пробой наступает при V= -27 в (прибор с каналом р-типа). Вспомним теперь, что в действительности пробой происходит между областями стока и затвора; это значит, что в цепи затвора течет большой ток, и поскольку затвор имеет нулевой потенциал по отношению к истоку, то пробивное напряжение цепи транзистора.

Если теперь повысить напряжение Vзи на +0,2 в, то напряжение пробоя цепи затвор — сток остается, как и прежде, равным —27 в, но кажущееся напряжение пробоя цепи сток — исток будет равным —26,8 в. Предельным для прибора является пробивное напряжение цепи сток — затвор. Теоретически оно будет постоянным независимо от потенциала истока, который может изменяться от потенциала стока в. одном крайнем случае до потенциала затвора в другом. Обычно это напряжение определяется при разомкнутой цепи истока и в согласии с принятой системой обозначений ему соответствует символ BVC30. Если на исток подано некоторое напряжение смещения X в, то кажущееся напряжение пробоя цепи сток — исток, обозначаемое BVсиХ, будет связано с напряжением BVc30 следующим соотношением:

BVсиХ = BVc30+VзиХ. (2.27)

4.5 Токи утечки

Затвор и канал в униполярном полевом транзисторе образуют р-n-переход; ток через этот переход и напряжение на нем подчиняются известному экспоненциальному соотношению:


(2.28)

где I3 — ток затвора; I30 — обратный ток затвора при насыщении; V3K — напряжение цепи затвор — канал (при прямом смещении положительное); k—постоянная Больцмана, дж/град; Т—абсолютная температура, °К.

Когда в качестве входного вывода полевого транзистора используется затвор, входная динамическая проводимость прибора определяется наклоном входной вольтамперной характеристики, изображенной на рис. 2.7; эта кривая представляет собой качественный график уравнения (2.28) для области, близкой к началу координат. Из уравнения (2.28) dI3/dV3K равно

(2.29)

Величина kT/q при комнатной температуре равна примерно 25 мв, а ток I30 униполярного полевого транзистора может быть равным всего 10-10 а. При I3=0 (Vзк = 0) входное сопротивление такого полевого транзистора при комнатной температуре может достигать 250 Мом и с увеличением обратного смещения будет повышаться. Поскольку полевой транзистор обычно работает при обратном смещении, на затворе, он, очевидно, представляет собой прибор с весьма высоким входным импедансом. Эквивалентная схема входной цепи полевого транзистора, находящегося при нормальном смещении, состоит из очень большого по величине нелинейного активного сопротивления, шунтированного конденсатором, номинальная емкость которого для реальных приборов лежит в пределах от 1 до 50 пф, и генератора очень слабого стабильного тока. Уравнение (2.29) показывает, что нелинейное входное сопротивление может стать весьма малым, если на затвор транзистора подать прямое смещение. Этим недостатком не обладают полевые транзисторы с поверхностным барьером.

4.6 Активное сопротивление открытого канала

Величина rсоткр ,т. е. сопротивления цепи сток-сток при Vзи=0, равна тангенсу угла наклона кривой зависимости Vзи от Iс в начале координат при нулевом напряжении смещения. По определению, эта величина равна 1/gmмакс; вспомним, что gmмакс есть проводимость участка канала, имеющего форму параллелепипеда и ограниченного у истокового конца обедненными слоями. При измерении rсоткр ток в канале отсутствует, и эффектами модуляции толщины канала можно пренебречь.

В общем случае сопротивление канала при нулевом напряжении стока и произвольном смещении равно rс = l/gm, следовательно, на основании (2.19) имеем

(2.30)

Это сопротивление можно снизить до величины, меньшей, чем rсоткр, подав на затвор прямое смещение. Минимальная возможная величина rс равна

(2.31)


4.7 Работа прибора на низких частотах в режиме малого сигнала

Ток в канале полевого транзистора можно, по существу, рассматривать как ток в нелинейной резистивно-емкостной линии передачи с распределенными параметрами, однако при работе на низких частотах достаточно считать прибор нелинейной электрической цепью с сосредоточенными параметрами. Эквивалентная схема, содержащая все сосредоточенные элементы, необходимые для анализа работы прибора на низких частотах, представлена на рис. 36. Емкости Ссз и Сиз и проводимости gc3 и gиз замещают в этой схеме переход затвор-канал, находящийся под обратным смещением. В правильно сконструированном полевом транзисторе gc3 и gиз будут весьма малы, и их можно рассматривать как цепочки с бесконечно большим сопротивлением (paзомкнутые цепочки). Величины rс и rи представляют собой объемные сопротивления полупроводника на участках между концами канала и контактами стока и истока, соответственно. Эти сопротивления будут иметь величины порядка 100 ом или менее в зависимости от геометрии прибора и технологии его изготовления.

На низких частотах влиянием сопротивления rс вполне можно пренебречь и считать его малой частью сопротивления нагрузки, которое обычно достаточно велико. Сопротивление rи оказывает небольшое влияние на эффективную крутизну характеристики прибора, однако и этим влиянием обычно пренебрегают. Напряжение v'зи на рис. 36 связано с напряжением vзи на выводе прибора соотношением

(2.32)

Для полевого транзистора, у которого gm= lма/в, а rи=75 ом, знаменатель выражения (2.32) равен 1,075.

Величина gси представляет собой тангенс угла наклона выходной характеристики в области насыщения и обычно мала по сравнению с проводимостью нагрузки.

Рис. 37. Общая эквивалентная схема четырехполюсника для вычисления y-параметров полевого транзистора.

У изготовителей вошло в практику указывать в качестве технических данных полевого транзистора комплексные параметры проводимости его эквивалентной схемы в режиме короткого замыкания. Общая эквивалентная схема четырехполюсника для вычисления параметров представлена на рис. 37. Напряжения и токи на выводах прибора в режиме малого сигнала, вычисленные для схемы с общим истоком, соответствуют следующим характеристическим уравнениям четырехполюсника :

iз=yвхиvзи+yобр иvси (2.33)

iс=yпр иvзи+yвыхиvси (2.34)

Условия для определения отдельных параметров следующие: