Основным достоинством многооборотных потенциометров является высокая разрешающая способность и точность, что достигается благодаря большой длине резистивного элемента при малых общих габаритах.
Фотопотенциометры
Фотопотенциометр − представляет собой бесконтактный аналог обычного потенциометра с резистивным слоем, механический контакт в нем заменен фотопроводящим, что, конечно, повышает надежность и срок службы. Сигналом с фотопотенциометра управляет световой зонд, выполняющий роль движка. Он формируется специальным оптическим устройством и может смещаться в результате внешнего механического воздействия вдоль фотопроводящего слоя. В месте засветки фотослоя возникает избыточная по сравнению с темновой фотопроводимость и создается электрический контакт.
Фотопотенциометры делятся по назначению на линейные и функциональные.
Функциональные фотопотенциометры позволяют пространственное перемещение источника света преобразовать в электрический сигнал заданного функционального вида за счет профилированного резистивного слоя (гиперболические, экспоненциальные, логарифмические).
Реверсивные потенциометрические датчики
Выходное напряжение реверсивных датчиков изменяет знак (полярность) при изменении знака входного сигнала. В системах автоматического регулирования обычно требуются именно реверсивные (или двухтактные) датчики.
Схемы реверсивных потенциометрических датчиков показаны на рис. 4.10. В схеме на рис. 4.10, а используется потенциометр с неподвижным выводом от средней точки намотки. Выходное напряжение снимается с движка и средней точки. При переходе движка через среднюю точку выходное напряжение изменяет свой знак: при питании переменным током фаза изменяется на 180°, а постоянным током — полярность изменяется на противоположную. В следящих системах широко используется мостовая схема включения потенциометрических датчиков, показанная на рис. 4.10, б. Потенциометр П1 связан с входной осью следящей системы и является задающим. Потенциометр П2 имеет механическую связь с исполнительным устройством. Выходное напряжение (или ток нагрузки) определяется разницей в положении движков потенциометров П1 и П2, т. е. соответствует сигналу ошибки следящей системы. Знак сигнала ошибки зависит от того, больше или меньше угол поворота исполнительного вала по сравнению с углом поворота входного вала.
Выходное напряжение рассматриваемых реверсивных схем может быть определено на основании теоремы об эквивалентном генераторе. Исследуемую систему представим как цепь, состоящую из четырехполюсника, источника питания с напряжением Uoи сопротивления нагрузки RH. Тогда на основании известного из электротехники метода можно утверждать, что схема ведет себя, как цепь, составленная из нагрузки RHи генератора с внутренним сопротивлением Rвыхи электродвижущей силой Е, равной напряжению холостого хода Uх. Сопротивление Rвых равно выходному сопротивлению четырехполюсника, которое вычисляют при закороченном источнике питания и отключенной нагрузке. Напряжение Uxизмеряется на выходе рассматриваемой схемы при отключенном сопротивлении нагрузки Ян. Для четырехполюсников по схемам рис. 4.10 выходное напряжениеUвых=UxRH(Rвых+RH)
Например, для схемы, изображенной на рис. 4.10, а, имеем
Ux = UH = U0 α /2,
Rвых=R α (1- α /2)/2.
Подставляя выражения (4.4) и (4.5) в формулу (4.3), получаем
Uвых=U0 α β >/( α-0,5 α 2+2 β),
Где β= RH/R.
Аналогичные вычисления позволяют получить для схемы рис. 4.10, б при одинаковых потенциометрах П1 и П2 уравнение выходного напряжения
где ∆α = ∆х/l— относительное рассогласование движков потенциометров П1 и П2; α = х/l — относительное перемещение движка задающего потенциометра П1; β = RH/ R— отношение сопротивления нагрузки RHк полному сопротивлению потенциометра R.
На рис 4.11 и 4.12 показаны выходные характеристики реверсивных потенциометрических датчиков, построенные соответственно по уравнениям (4.6) и (4.7). Характеристики построены при различных значениях коэффициента нагрузки р. Расчетные характеристики при холостом ходе (β = ∞) представляют собой прямые линии, т. е. являются линейными. С уменьшением сопротивления нагрузки увеличивается отклонение характеристики от линейной. Чувствительность датчика со средней точкой (рис. 4.10, а), как следует из уравнения (4.6) и рис. 4.11, в области малых отклонений, а практически не зависит от нагрузки и определяется равенством
Характеристики, изображенные на рис. 4.12, соответствуют мостовой схеме (см. рис. 4.10, б) и построены на основании формулы (4.7) для случая, когда движок задающего потенциометра установлен посередине его намотки и, следовательно, α = 0,5, а относительное рассогласование движков ∆α может изменяться в пределах от -0,5 до +0,5. Чувствительность мостовой схемы зависит не только от нагрузки, но и от положения движка задающего потенциометра:
Анализ этого уравнения показывает, что наименьшее значение чувствительности будет при α = 0,5. Этому случаю и соответствуют характеристики, показанные на рис. 4.12.
В маломощных следящих системах в качестве нагрузки мостовой схемы может быть включен якорь исполнительного электродвигателя. При рассогласовании в положениях движков задающего и исполнительного потенциометров через якорь электродвигателя пойдет ток, значение которого будет соответствовать величине рассогласования (∆α), а направление — знаку рассогласования. Электродвигатель перемещает исполнительную ось следящей системы до тех пор, пока не будет устранено рассогласование.