Смекни!
smekni.com

Электрическая схема потенциометрического датчика (стр. 2 из 2)

Основным достоинством многооборотных потенциометров является высокая разрешающая способность и точность, что достигается благодаря большой длине резистивного элемента при малых общих габаритах.

Фотопотенциометры

Фотопотенциометр − представляет собой бесконтактный аналог обычного потенциометра с резистивным слоем, механический контакт в нем заменен фотопроводящим, что, конечно, повышает надежность и срок службы. Сигналом с фотопотенциометра управляет световой зонд, выполняющий роль движка. Он формируется специальным оптическим устройством и может смещаться в результате внешнего механического воздействия вдоль фотопроводящего слоя. В месте засветки фотослоя возникает избыточная по сравнению с темновой фотопроводимость и создается электрический контакт.

Фотопотенциометры делятся по назначению на линейные и функциональные.

Функциональные фотопотенциометры позволяют пространственное перемещение источника света преобразовать в электрический сигнал заданного функционального вида за счет профилированного резистивного слоя (гиперболические, экспоненциальные, логарифмические).

Реверсивные потенциометрические датчики

Выходное напряжение реверсивных датчиков изменяет знак (поляр­ность) при изменении знака входного сигнала. В системах автома­тического регулирования обычно требуются именно реверсивные (или двухтактные) датчики.

Схемы реверсивных потенциометрических датчиков показаны на рис. 4.10. В схеме на рис. 4.10, а используется потенциометр с не­подвижным выводом от средней точки намотки. Выходное напряже­ние снимается с движка и средней точки. При переходе движка че­рез среднюю точку выходное напряжение изменяет свой знак: при питании переменным током фаза изменяется на 180°, а постоянным током — полярность изменяется на противоположную. В следящих системах широко используется мостовая схема включения потен­циометрических датчиков, показанная на рис. 4.10, б. Потенциометр П1 связан с входной осью следящей системы и является задающим. Потенциометр П2 имеет механическую связь с исполнительным устройством. Выходное напряжение (или ток нагрузки) определяет­ся разницей в положении движков потенциометров П1 и П2, т. е. со­ответствует сигналу ошибки следящей системы. Знак сигнала ошиб­ки зависит от того, больше или меньше угол поворота исполнитель­ного вала по сравнению с углом поворота входного вала.

Выходное напряжение рассматриваемых реверсивных схем мо­жет быть определено на основании теоремы об эквивалентном гене­раторе. Исследуемую систему представим как цепь, состоящую из четырехполюсника, источника питания с напряжением Uoи сопро­тивления нагрузки RH. Тогда на основании известного из электро­техники метода можно утверждать, что схема ведет себя, как цепь, составленная из нагрузки RHи генератора с внутренним сопротивле­нием Rвыхи электродвижущей силой Е, равной напряжению холо­стого хода Uх. Сопротивление Rвых равно выходному сопротивлению четырехполюсника, которое вычисляют при закороченном источнике питания и отключенной нагрузке. Напряжение Uxизмеряется на выходе рассматриваемой схемы при отключенном сопротивлении нагрузки Ян. Для четырехполюсников по схемам рис. 4.10 выходное напряжение

Uвых=UxRH(Rвых+RH)

Например, для схемы, изображенной на рис. 4.10, а, имеем

Ux = UH = U0 α /2,

Rвых=R α (1- α /2)/2.

Подставляя выражения (4.4) и (4.5) в формулу (4.3), получаем

Uвых=U0 α β >/( α-0,5 α 2+2 β),

Где β= RH/R.

Аналогичные вычисления позволяют получить для схемы рис. 4.10, б при одинаковых потенциометрах П1 и П2 уравнение вы­ходного напряжения

где ∆α = ∆х/l— относительное рассогласование движков потенцио­метров П1 и П2; α = х/lотносительное перемещение движка зада­ющего потенциометра П1; β = RH/ R— отношение сопротивления нагрузки RHк полному сопротивлению потенциометра R.

На рис 4.11 и 4.12 показаны выходные характеристики ревер­сивных потенциометрических датчиков, построенные соответствен­но по уравнениям (4.6) и (4.7). Характеристики построены при раз­личных значениях коэффициента нагрузки р. Расчетные характери­стики при холостом ходе (β = ∞) представляют собой прямые линии, т. е. являются линейными. С уменьшением сопротивления нагрузки увеличивается отклонение характеристики от линейной. Чувствите­льность датчика со средней точкой (рис. 4.10, а), как следует из уравнения (4.6) и рис. 4.11, в области малых отклонений, а практи­чески не зависит от нагрузки и определяется равенством

Характеристики, изображенные на рис. 4.12, соответствуют мос­товой схеме (см. рис. 4.10, б) и построены на основании формулы (4.7) для случая, когда движок задающего потенциометра установлен посередине его намотки и, следовательно, α = 0,5, а относитель­ное рассогласование движков ∆α может изменяться в пределах от -0,5 до +0,5. Чувствительность мостовой схемы зависит не только от нагрузки, но и от положения движка задающего потенциометра:

Анализ этого уравнения показывает, что наименьшее значение чувствительности будет при α = 0,5. Этому случаю и соответствуют характеристики, показанные на рис. 4.12.

В маломощных следящих системах в качестве нагрузки мосто­вой схемы может быть включен якорь исполнительного электродви­гателя. При рассогласовании в положениях движков задающего и исполнительного потенциометров через якорь электродвигателя пойдет ток, значение которого будет соответствовать величине рас­согласования (∆α), а направление — знаку рассогласования. Элект­родвигатель перемещает исполнительную ось следящей системы до тех пор, пока не будет устранено рассогласование.