Смекни!
smekni.com

Использование ядерного магнитного резонанса ЯМР и электронного парамагнитного резонанса ЭПР (стр. 1 из 3)

АО «МЕДИЦИНСКИЙ УНИВЕРСИТЕТ АСТАНА»

Кафедра информатики и математики с курсом медбиофизики

Реферат

По медбиофизике

Тема «Использование ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР) в медицинских исследованиях»

Работа выполнена студентом:

Факультет общей медицины, стоматологии и фармации

Группа

Работу проверил:

Астана

2010 год

План.

I Введение.

II Основная часть. ЭПР и ЯМР: физическая сущность и процессы, лежащие в основе этих явлений, применение в медико-биологических исследованиях.

1) Электронный парамагнитный резонанс.

а) Физическая сущность ЭПР.

б) Расщепление энергетических уровней. Эффект Зеемана.

в) Электронное расщепление. Сверхтонкое расщепление.

г) Спектрометры ЭПР: устройство и принцип работы.

д) Метод спинового зонда.

е) Применение спектров ЭПР в медико-биологических исследованиях.

2) Ядерный магнитный резонанс.

а) Физическая сущность ЯМР.

б) Спектры ЯМР.

в) Использование ЯМР в медико-биологических исследованиях: ЯМР-интроскопия (магнитно-резонансная томография).

III Заключение. Значение медицинских методов исследования, основывающихся на ЭПР и ЯМР.


I.Введение.

У атома, помещенного в магнитное поле, спонтанные переходы между подуровнями одного и того же уровня маловероятны. Однако такие переходы осуществляются индуцировано под влиянием внешнего электромагнитного поля. Необходимым условием является совпадение частоты электромагнитного поля с частотой фотона, соответствующего разности энергий между расщепленными подуровнями. При этом можно наблюдать поглощение энергии электромагнитного поля, которое называют магнитным резонансом. В зависимости от типа частиц – носителей магнитного момента – различают электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР).

II. Основная часть. ЭПР и ЯМР: физическая сущность и процессы, лежащие в основе этих явлений, применение в медико-биологических исследованиях.

1. Электронный парамагнитный резонанс. Электронный парамагнитный резонанс (ЭПР), это резонансное поглощение электромагнитной энергии в сантиметровом или миллиметровом диапазоне длин волн веществами, содержащими парамагнитные частицы. ЭПР — один из методов радиоспектроскопии. Вещество называется парамагнитным, если оно не имеет макроскопического магнитного момента в отсутствие внешнего магнитного поля, но приобретает его после приложения поля, при этом величина момента зависит от поля, а сам момент направлен в ту же сторону, что и поле. С микроскопической точки зрения парамагнетизм вещества обусловлен тем, что атомы, ионы или молекулы, входящие в это вещество, обладают постоянными магнитными моментами, случайно ориентированными друг относительно друга в отсутствие внешнего магнитного поля. Приложение постоянного магнитного поля приводит к направленному изменению их ориентаций, вызывающему появление суммарного (макроскопического) магнитного момента.

ЭПР открыт Е. К. Завойским в 1944 году. Начиная с 1922 в ряде работ высказывались соображения о возможности существования ЭПР. Попытка экспериментально обнаружить ЭПР была предпринята в середине 30-х годов нидерландским физиком К. Гортером. Однако ЭПР удалось наблюдать только благодаря радиоспектроскопическим методам, разработанным Завойским. ЭПР — частный случай магнитного резонанса.

Физическая сущность ЭПР. Суть явления электронного парамагнитного резонанса заключается в следующем. Если поместить свободный радикал с результирующим моментом количества движения J в магнитном поле с напряжённостью B0, то для J, отличного от нуля, в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает 2J+1 уровней, положение которых описывается выражением: W = gβB0M, (где М=+J, +J-1, …-J) и определяется Зеемановским взаимодействием магнитного поля с магнитным моментом J.

Если теперь к парамагнитному центру приложить электромагнитное поле с частотой ν, поляризованное в плоскости, перпендикулярной вектору магнитного поля B0, то оно будет вызывать магнитные дипольные переходы, подчиняющиеся правилу отбора ΔМ=1. При совпадении энергии электронного перехода с энергией фотона электромагнитной волны будет происходить резонансное поглощение СВЧ излучения. Таким образом, условие резонанса определяются фундаментальным соотношением магнитного резонанса hν = gβB0.

Расщепление энергетических уровней. Эффект Зеемана. В отсутствие внешнего магнитного поля магнитные моменты электронов ориентированы случайным образом, и их энергия практически не отличается друг от друга (Е0). При наложении внешнего магнитного поля магнитные моменты электронов ориентируются в поле в зависимости от величины спинового магнитного момент, и их энергетический уровень расщепляется на два. Энергия взаимодействия магнитного момента электрона с магнитным полем выражается уравнением:

E =

,

где

- магнитный момент электрона, Н - напряженность магнитного поля. Из уравнения коэффициента пропорциональности следует, что

,

а энергия взаимодействия электрона с внешним магнитным полем составит

.

Это уравнение описывает эффект Зеемана, который можно выразить следующими словами: энергетические уровни электронов, помещенных в магнитное поле, расщепляются в этом поле в зависимости от величины спинового магнитного момента и интенсивности магнитного поля.

Электронное расщепление. Сверхтонкое расщепление. Большинство приложений, в том числе и медико-биологических, базируются на анализе группы линий (а не только синглентых) в спектре поглощения ЭПР. Наличие в спектре ЭПР группы близких линий условно называют расщеплением. Имеется два характерных типа расщепления для спектра ЭПР. Первое – электронное расщепление – возникает в тех случаях, когда молекула или атом обладают не одним, а несколькими электронами, вызывающими ЭПР. Второе – сверхтонкое расщепление – наблюдается при взаимодействии электронов с магнитным моментом ядра. Согласно классическим представлениям, электрон, обращающийся вокруг ядра, как и любая движущаяся по круговой орбите заряженная частица, имеет дипольный магнитный момент. Аналогично и в квантовой механике, орбитальный угловой момент электрона создаёт определённый магнитный момент. Взаимодействие этого магнитного момента с магнитным моментом ядра (обусловленным ядерным спином) приводит к сверхтонкому расщеплению (т. е. создаёт сверхтонкую структуру). Однако электрон также обладает спином, дающим вклад в его магнитный момент. Поэтому сверхтонкое расщепление имеется даже для термов с нулевым орбитальным моментом. Расстояние между подуровнями сверхтонкой структуры по порядку величины в 1000 раз меньше, чем между уровнями тонкой структуры (такой порядок величины по существу обусловлен отношением массы электрона к массе ядра).

Спектрометры ЭПР: устройство и принцип работы. Устройство радиоспектрометра ЭПР во многом напоминает устройство спектрофотометра для измерения оптического поглощения в видимой и ультрафиолетовой частях спектра. Источником излучения в радиоспектрометре является клистрон, представляющий из себя радиолампу, дающую монохроматическое излучение в диапазоне сантиметровых волн. Диафрагме спектрофотометра в радиоспектрометре соответствует аттенюатор, позволяющий дозировать мощность, падающую на образец. Кювета с образцом в радиоспектрометре находится в специальном блоке, называемом резонатором. Резонатор представляет собой параллелепипед, имеющий цилиндрическую или прямоугольную полость в которой находится поглощающий образец. Размеры резонатора таковы, что в нем образуется стоячая волна. Элементом отсутствующем в оптическом спектрометре является электромагнит, создающий постоянное магнитное поле, необходимое для расщепления энергетических уровней электронов. Излучение, прошедшее измеряемый образец, в радиоспектрометре и в спектрофотометре, попадает на детектор, затем сигнал детектора усиливается и регистрируется на самописце или компьютере. Следует отметить еще одно отличие радиоспектрометра. Оно заключается в том, что излучение радиодиапазона передается от источника к образцу и далее к детектору с помощью специальных трубок прямоугольного сечения, называемых волноводами. Размеры сечения волноводов определяются длиной волны передаваемого излучения. Эта особенность передачи радиоизлучения по волноводам и определяет тот факт, что для регистрации спектра ЭПР в радиоспектрометре используется постоянная частота излучения, а условие резонанса достигается изменением величины магнитного поля. Еще одной важной особенностью радиоспектрометра является усиление сигнала посредством его модуляции высокочастотным переменным полем. В результате модуляции сигнала происходит его дифференцирование и превращение линии поглощения в свою первую производную, являющуюся сигналом ЭПР.

Метод спинового зонда. Спиновые зонды - индивидуальные парамагнитные химические вещества, применяемые для изучения различных молекулярных систем с помощью спектроскопии ЭПР. Характер изменения спектра ЭПР этих соединений позволяет получать уникальную информацию о взаимодействиях и динамике макромолекул и о свойствах различных молекулярных систем. Это метод исследования молекулярной подвижности и различных структурных превращений в конденсированных средах по спектрам электронного парамагнитного резонанса стабильных радикалов (зондов), добавленных к исследуемому веществу. Если стабильные радикалы химически связаны с частицами исследуемой среды, их называют метками и говорят о методе спиновых (или парамагнитных) меток. В качестве зондов и меток используют главным образом нитроксильные радикалы, которые устойчивы в широком интервале температур (до 100-200○С), способны вступать в химические реакции без потери парамагнитных свойств, хорошо растворимы в водных и органических средах. Высокая чувствительность метода ЭПР позволяет вводить зонды (в жидком или парообразном состоянии) в малых количествах - от 0,001 до 0,01% по массе, что не вызывает изменения свойств исследуемых объектов. Метод спиновых зондов и меток применяется особенно широко для исследования синтетических полимеров и биологических объектов. При этом можно изучать общие закономерности динамики низкомолекулярных частиц в полимерах, когда спиновые зонды моделируют поведение различных добавок (пластификаторы, красители, стабилизаторы, инициаторы); получать информацию об изменении молекулярной подвижности при химической модификации и структурно-физических превращениях (старение, структурирование, пластификация, деформация); исследовать бинарные и многокомпонентные системы (сополимеры, наполненные и пластифицированные полимеры, композиты); изучать растворы полимеров, в частности влияние растворителя и температуры на их поведение; определять вращательную подвижность ферментов, структуру и пространств. расположение групп в активном центре фермента, конформацию белка при различных воздействиях, скорость ферментативного катализа; изучать мембранные препараты (например, определять микровязкость и степень упорядоченности липидов в мембране, исследовать липид-белковые взаимодействия, слияние мембран); изучать жидкокристаллические системы (степень упорядоченности в расположении молекул, фазовые переходы), ДНК, РНК, полинуклеотиды (структурные превращения под влиянием температуры и среды, взаимодействие ДНК с лигандами и интеркалирующими соединениями). Метод используют также в различных областях медицины для исследования механизма действия лекарственных препаратов, анализа изменений в клетках и тканях при различных заболеваниях, определении низких концентраций токсичных и биологически активных веществ в организме, изучения механизмов действия вирусов.