Смекни!
smekni.com

Техника физического эксперемента (конспект) (стр. 10 из 14)

Принцип роботи:

Вимірювання відбувається в 2 етапи.

1. Аналоговий інтегратор спочатку приєднується до вимірювальної величини на час вимірювання. Попередньо інтегратор був заряджений до величини еталонної напруги.

2. Аналоговий інтегратор перемикається на еталонну напругу (від’єднується від вхідної величини). Цей інтервал часу вимірюємо.

Ux ~ t3 – t2, Nx ~ Ux

Незалежно від фази наводки і початку інтегрування Ux наводка не впливає на результат перетворення.

1 стан

2 стан

t = t3:

Можна реалізувати метод прямого відліку.

56. Цифрові вольтметри з цифровим інтегруванням.

Працює як фазометр середнього значення.

Інша назва – цифровий вольтметр із цифровим усередненням.

Похибки:

g. δш – нестабільність кварцованого генератора

h.

– похибка зумовлена дискретністю відлікових імпульсів по часу

i. δш – похибка зумовлена наявність шумів на вході (випадкова складова часу спрацювання компаратора)

Результат видається після підрахунку m пачок із Nx імпульсів.

За рахунок усереднення δш зменшується.

Відрізняється від цифрового вольтметра миттєвого значення наявністю це одного селектора, який відкривається з блоку керування (БК) на інтервал часу в m разів більше ніж Tв.

57. Цифрові осцилографи.

Структурна блок-схема цифрового осциллографа:

Вхідний пристрій використовується для узгодження вхідного діапазону АЦП і сигналу.

58. Режими роботи, використання і особливості багатоканальних та багатопроменевих аналогових осцилографів.

Багатопроменеві осцилографи складаються з кількох вхідних пристроїв (підсилювачів) та багатопроменевої електронно-променевої трубки.

Осцилографів з кількістю каналів більше 8 не випускають. Якщо необхідна велика кількість каналів, то сигнали від входів комутують, тобто сигнали відтворюються на електронно-променевій трубці аналогового осцилографа почергово.

Існує два режими комутації:

j. З частотою розгортки по X комутують канали. Використовують при малих періодах вхідних сигналів.

Позначення на органах керування осцилографа: – – Y1, Y2

k. Режим комутації з високою частотою (набагато більшу за частоту розгортки по X)

Позначення на органах керування осцилографа: ······· Y1, Y2

Структурна схема таких осцилографів відрізняється тим, що є електронний комутатор і декілька вхідних пристроїв.

Часто багато канальні осцилографи дозволяють спостерігати сигнали Y1 + Y2 і Y1 - Y2. Це дуже широко використовується для налагодження слідкуючих систем.

Є осцилографи з двома розгортками: затримувана та затримуюча. Вони дозволяють більш детально дослідити сигнал на вибраному проміжку часу від початку розгортки.

В осцилографах з вибором телевізійного рядка за рахунок плавного регулювання запуску швидкої розгортки можна спостерігати відео сигнал окремого рядка.

Якщо необхідно дискретно виділити той чи інший рядок, то використовують лічильник, який підраховує кількість рядків, скидається КСІ (кадровим синхроімпульсом). Далі код лічильника подається на схему співпадання.

59. Типи шумів, їх вплив на параметри конгровимірювальних приладів, корисне використання шумів.

Шуми – це не детерміновані сигнали, тобто такі сигнали як не можна однозначно описати математичною функцією. Вони описуються усередненими статистичними параметрами.

Відхилення від середнього значення може бути й детермінованим – наводка. Їх зменшють методом екранування.

Не детерміновані флуктуації – шуми. Відхилення величин від свого середнього значення.

Шуми двох типів:

1. Технічні шуми

(флікерні шуми – шуми миготіння у барієвих катодах, флікерні шуми в напівпровідниках типу 1/f, обумовлені різними повльними процесами на поверхні напівпровідника)

Шуми в напівпровідниках типу 1/f виникають і при тунельному ефекті.

Ці шуми можна зменшити за рахунок вакууму, не залежать від температури, залежать від тиску газів.

10-3 Гц до 103 кГц

Контактні шуми – виникають за рахунок іскріння контактів.

2. Природні шуми

З ними не можливо боротися, але можна створити умови для їх зменшення.

Тепловий шум. Існує завжди не залежно від того чи прикладена напруга чи ні. Є універсальним. Залежить від опору і температури.

Дробовий шум. Обумовлений дискретністю переносу заряду та енергії. Дробові шуми існують, коли прикладена напруга.

Випадковий характер емісії з катода (випадковий характер інжекції в напівпровіднику).

Генераційно-рекомбінаційні шуми. Обумовлені випадковим характером енерації та рекомбінації носіїв зарядів.

Шумова спектроскопія – приклад корисного використання генераційно-рекомбінаційних шумів. За допомогою шумової спектроскопії можна дізнатися про структуру твердого тіла.

Дифузійні шуми. Обумовлені випадковим характером дифузійної довжини.

Шуми лавинного помноження. Обумовлені випадковими процесами при ударній іонізації (утворенні лавини). Характеристики шумів лавинного помноження такі ж як і для дробового шуму, але параметри шуму більші в n3 разів, де n – коефіцієнт помноження лавини.

Фотонні шуми. Обумовлені дискретністю потоку фотонів.

На практиці сукупність шумів замінюють шумом з ефективним значенням:

Часто сумарний шум прирівнюють до теплового.

Основний параметр – відношення сигнал/шум:

Шуми обмежують чутливість, роздільну здатність, динамічний діапазон приладів.

Шуми корисно використовуються в ряді приладів. Можна визначити зонну діаграму напівпровідника. Шуми використовують для оцінки надійності електронних компонент. Генератори шумів дозволяють вимірювати інтегральні (по частоті) характеристики схем та приладів.

60. Характеристики та параметри шумів (не детермінованих сигналів) і їх вимірювання.

Шуми можна спостерігати по окремим реалізаціям. Сукупність реалізацій – ансамбль реалізацій. Параметри вводяться для характеристики ансамблю реалізацій.

Функція розподілу густини ймовірності:

Математичне сподівання:

Ефективне значення:

Функція кореляції по ансамблю реалізацій.

Можна знайти двомірний розподіл густини ймовірності:

Можна знайти енергетичний спектр (теорема Вінера-Хінчіна).

В загальному випадку всі ці функції можуть залежати від часу, тоді такі процеси (шуми) називають нестаціонарними.

Стаціонарні шуми. Функція кореляції залежить лише від проміжку час між τ = t2 – t1 , а не від самих значень t1 і t2.

, τ = t2 – t1

Стаціонарні процеси бувають ергодичними й не ергодичними. Для ергодичних роцессів параметри для ансамблю реалізацій можна розрахувати по єдиній реалізацій.

Чим більше тривалість реалізації тим точніше можна визначити характеристики.

Математично власність ергодичності можна встановити по функції кореляції:

Для інженерних розрахунків беруть час реалізації більший за час кореляції.

Ефективне значення змінної складової:

.

; якщо U0 = 0, то

Енергетичний спектр – це розподіл густини потужності шуму по частотному діапазону.

;