Расчет центра ведется следующим образом.
Определяется условный центр электрических нагрузок i-го узла группы ЭП:
(45) (46)Так как мощность электроприемников меняется со временем, то координаты условного центра определяют для каждого часа и определяют математическое ожидание условного центра для суток:
(47) (48)Среднеквадратичное отклонение:
(49) (50)Угол поворота осей эллипса:
(51)Полуоси эллипса рассеяния центров:
(52) , (53)где k - коэффициент корреляции.
(54)На основании расчетных значений математического ожидания условного центра нагрузок, координат полуосей и угла поворота осей строится эллипс рассеяния нагрузок. Место расположения источника питания (ТП) выбирается в наиболее удобной его точке. Если по какой - либо причине (технологической, архитектурной, эллипс рассеяния попадает на территорию цеха и др.) нельзя расположить источник питания в зоне рассеяния нагрузок, то его смещают в сторону внешнего источника питания.
По приведенным выше формулам для автоматизации расчета используется программа “ZAPUSK".
Таблица 12 - Исходные данные
Номер на плане | Мощность, кВт | x | y |
1 | 48 | 11 | 143 |
2 | 48 | 11 | 129 |
3…5 | 30 | 100 | 133 |
6…8 | 36 | 165 | 139 |
9…11 | 45 | 165 | 121 |
12…14 | 12 | 166 | 100 |
15…17 | 9 | 9 | 30 |
18.19 | 6,4 | 51 | 50 |
20…25 | 54 | 52 | 22 |
26…27 | 17 | 104 | 29 |
28…30 | 37,5 | 134 | 25 |
31…34 | 38 | 165 | 20 |
35…37 | 34,5 | 199 | 58 |
38 | 25 | 10 | 102 |
39 | 25 | 133 | 58 |
ЦЭН | 99,123 | 79,02 |
Расчет ведется аналогично расчету, приведенному в пункте 1.4
В таблицу сведенные исходные данные.
Таблица 13 - Исходные данные
РрΣ, кВт | QрΣ, кВт | К1/К2 | γ | Кз |
257,6 | 268,9 | 9/4 | 0,37 | 0,75 |
Определяем мощность трансформатора:
Итак, на КТП устанавливаем один трансформатор мощностью 400 кВ·А.
Определяем наибольшую реактивную мощность, которую выгодно передать через трансформаторы с сеть 0,4 кВ:
кВ·Ар.Определяем суммарную мощность низковольтных компенсирующих устройств по первому этапу:
кВ·Ар.Выбираем суммарную мощность НКУ по второму этапу (т. е по этапу снижения потерь электроэнергии в трансформаторе или распределительных сетях):
кВ·Ар.Суммарная мощность НКУ равна:
кВ·Ар.Итак, для компенсации выбираем две батареи конденсаторов типа УК2-0,38-50 У3.
Сети напряжением до 1 кВ служат для распределения электроэнергии внутри цехов промышленных предприятий и осуществляют непосредственное питание электроприемников (ЭП). Схема внутрицеховой сети определяется технологическим процессом производства, планировкой помещений цеха, взаимным расположением ЭП и вводом питания, ТП, требованиям бесперебойности электроснабжения, технико-экономическими соображениями, условиями окружающей среды.
По своей структуре схемы электрических сетей цеха могут быть радиальными, магистральными и смешанными.
Радиальные схемы применяются при наличии сосредоточенных нагрузок с неравномерным распределением их по площади цеха, во взрыво - и пожароопасных и других цехах и выполняются кабелями или изолированными проводами. Они могут быть применены для нагрузок любой категории надежности.
Магистральные схемы целесообразно применять для питания силовых и осветительных нагрузок, распределенных относительно равномерно по площади цеха, а также для питания групп ЭП, принадлежащих одной технологической линии.
Одной из видов магистральных схем является схема БТМ (блок трансформатор - магистраль). Схемы БТМ широко применяются для питания цеховых сетей механических цехов машиностроительных предприятий с поточным производством. Магистральный шинопровод присоединяется непосредственно к выводам низкого напряжения трансформатора, а количество магистральных шинопроводов соответствует числу трансформаторов КТП. При магистральной схеме ЭП подключаются в любой точке шинопровода. Обеспечения надежности электроснабжения ЭП обеспечивается введением в схему резервной перемычки.
Наибольшее распространение имеют смешанные (комбинированные) схемы, сочетающие в себе элементы радиальных и магистральных схем и пригодные для любой категории электроснабжения. В смешанных схемах от главных питающих магистралей и их ответвлений ЭП питаются через РШ или ШРА в зависимости от расположения оборудования.
Расчет электрических нагрузок для выбора схемы электроснабжения по второму этапу рассчитывается для уточнения электрических нагрузок по элементам сети. Расчет ведется методом расчетного коэффициента в программе "ZAPUSK". Расчет приведен в приложении А, результаты расчета сведены в таблицы 15 и 16.
В качестве главной магистрали выбираем комплектный магистральный шинопровод марки ШМА4У3 с номинальным током 1600 А, длиной 97 м.
Рисунок 4 - Первый вариант схемы электроснабжения.
Рисунок 5 - Второй вариант схемы электроснабжения
Таблица 14 - Первый вариант распределительной сети цеха
Обозначение на плане | Расчётный ток, А | Фактическое число ЭП | Расчетная активная мощность, кВт | Расчетная реактивная мощность, кВ·Ар | Марка |
ШРА1 | 33,7 | 9 | 13,5 | 19 | ШРА4 на ток 250 А |
ШРА2 | 39,3 | 10 | 15,3 | 22,5 | ШРА4 на ток 250 А |
ШРА3 | 25,8 | 8 | 10,3 | 14,5 | ШРА4 на ток 250 А |
ШТМ | 32 | 1 | 19,4 | 11,8 | ШТМ на ток 100 А |
ШОС | 42 | 27,9 | 8,4 | ШОС-73 на ток 63 А | |
СП1 | 184,8 | 2 | 96 | 84,7 | СП62-2/1 на ток 250 А |
СП2 | 86,7 | 3 | 30 | 52 | СП62-2/1 на ток 175 А |
СП3 | 21,7 | 3 | 9 | 12 | СП62-2/1 на ток 175 А |
СП4 | 23,2 | 2 | 9,6 | 12,9 | СП62-2/1 на ток 175 А |
Таблица 15 - Второй вариант распределительной сети
Обозначение на плане | Расчётный ток, А | Фактическое число ЭП | Расчетная активная мощность, кВт | Расчетная реактивная мощность, кВ·Ар | Марка |
ШРА1 | 33,7 | 9 | 13,5 | 19 | ШРА4 на ток 250 А |
ШРА2 | 54,9 | 16 | 18,3 | 33,4 | ШРА4 на ток 250 А |
ШТМ | 32 | 1 | 19,4 | 11,8 | ШТМ на ток 100 А |
ШОС | 42 | 27,9 | 8,4 | ШОС-73 на ток 63 А | |
СП1 | 184,8 | 2 | 96 | 84,7 | СП62-2/1 на ток 250 А |
СП2 | 86,7 | 3 | 30 | 52 | СП62-2/1 на ток 175 А |
СП3 | 21,7 | 3 | 9 | 12 | СП62-2/1 на ток 175 А |
СП4 | 23,2 | 2 | 9,6 | 12,9 | СП62-2/1 на ток 175 А |
Длительно протекающий по проводнику ток, при котором устанавливается наибольшая длительно допустимая температура нагрева проводника, называется предельно допустимым током по нагреву.