Оптические проявления влияния излучений разнообразны и иногда возникают при довольно слабом облучении. Из всех этих проявлений мы ограничимся примером появления так называемых центров окраски (F-центры) в кристаллах поваренной соли. Эти кристаллы при облучении окрашиваются в желтый цвет (длина волны спектральной линии 465 нм). Происхождение этого окрашивания объясняется следующим образом. Вакансия на месте выбитого отрицательного иона хлора замещается электроном. На этот электрон действуют примерно те же силы, что и на ион хлора. Но при одинаковых силах квадраты частот колебаний обратно пропорциональны массам. Электрон в десятки тысяч раз легче атома хлора. Поэтому частота колебаний электрона, занявшего вакансию, будет в сотни раз больше частоты колебаний атома. А этого как раз достаточно, чтобы «довести» частоту колебаний электрона до оптической области. Правильность такого объяснения радиационного окрашивания подтверждается эффектом точно такого же окрашивания поваренной соли при нагреве ее в парах натрия с последующим быстрым охлаждением. Этот процесс приводит к избытку натрия, т. е. к хлорным вакансиям, и следовательно, к появлению центров окраски.
5. Изучение различных радиационных повреждений и их зависимостей от вида облучения, температуря и т. д. важно как для практических задач, связанных с работой различных приборов и других устройств в условиях облучения, так и для изучения многих вопросов физики твердого тела.
Для направленного искусственного изменения свойств материалов применяется имплантация (т. е. внедрение) в них тяжелых ионов.
Имплантация ионов оказывается чрезвычайно полезной во многих случаях. Например, имплантация ионов бора, фосфора и тантала значительно улучшает свойства кремниевых и германиевых детекторов. Имплантация тяжелых ионов открывает широкие возможности для изготовления и изучения свойств новых сплавов, которые из-за химической несовместимости компонентов невозможно получить другими способами, и т. д.
В некоторых случаях и радиационными повреждениями, наносимых веществу тяжелыми ионами, удается найти полезное практическое применение. Примерами могут служить изготовление ядерных фильтров и датировка событий по трекам продуктов деления урана. При прохождении тяжелых ионов через непроводящие кристаллы и аморфные тела вдоль трека иона из-за большой плотности ионизации (плотность ионизации пропорциональна z2, где z- заряд иона) образуется канал сильного радиационного повреждения. Вещество в пределах канала более чувствительно к химическому воздействию и может быть удалено, например, посредством окисления и последующего травления и промывания. В результате на месте канала получаются пустоты.
Поэтому, если облучить полимерную пленку толщиной в несколько микрон тяжелыми ионами и подвергнуть ее указанной выше химической обработке, то в местах прохождения ионов в пленке образуются сквозные отверстия, так что пленка в целом может служить великолепным фильтром. При этом диаметр отверстий фильтра характеризуется небольшим разбросом и может заранее задан посредством соответствующего подбора условий травления (временем, температурой и т. д.).
Для примера на рис. 13.6 показаны фотографии (полученные с помощью электронного микроскопа) обычного химического фильтра со среднем размером пор 0,45 мкм (рис. 13.6, а) и ядерного фильтра с размером пор 0,4 (рис. 13.6, б). Как видно из рисунка, качество ядерного фильтра намного выше химического. Применение ядерных фильтров исключительно многообразно. Очистка газов, воды, сортировка микропримесей по размерам, изучение размеров и формы типов клеток крови, стерилизация биологических сред, фильтрация и разделение различных типов вирусов и молекул, очистка пива и вина – вот далеко не полный перечень.
Датировка событий по трекам продуктов деления ядра изотопа урана 92U238 основывается на том, что треки тяжелых ионов, возникающих при делении ядра, становится видимыми (естественно, при сильном увеличении) при окислении и травлении.
По числу треков, приходящихся на единицу поверхности, и содержанию урана можно определить время существования образца.
Под естественной радиоактивностью понимают способность веществ, содержащих определенные элементы, самопроизвольно, без внешнего воздействия, испускать невидимое излучение, имеющее сложный состав. В настоящее время широко известно, что в результате распада из радиоактивных ядер могут излучаться альфа- частицы, представляющие собой ядра гелия, бета - частицы, представляющие собой поток электронов, и гамма - излучение, представляющее собой поток квантов. Гамма - излучение имеет такую же природу, как свет или рентгеновское излучение, и отличается от них лишь механизмом образования. Продукты распада могут быть, в свою очередь, радиоактивными. Это приводит к появлению радиоактивных цепочек или рядов, в которых один элемент порождает другой (или другие). Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством. Известны три естественных радиоактивных семейства - урана, тория и актиния. Помимо радиоактивных семейств, в природе Земли встречаются отдельные радиоактивные элементы, к которым относятся калий -40, рубидий -87 и другие. Среди десятков естественных радиоактивных элементов встречаются элементы, имеющие периоды полураспада от миллиардных долей секунды (дочерние продукты) до миллиардов лет (родоначальники семейств). Химический элемент уран широко представлен в земной коре, хотя встречаются и рудные аномалии, из которых он сейчас и добывается. Наиболее широко известен из уранового семейства газообразный радиоактивный радон-222, который легко выходит из недр Земли или накапливается в ее герметичных полостях. Этот альфа - радиоактивный элемент и продукты его распада дают основной вклад в дозу облучения населения от естественного фона земной коры. Чтобы оценить масштабы естественной радиоактивности, достаточно назвать общую активность радона-222, который выделяется из земной коры в течение года. По оценкам специалистов эта активность составляет десятки триллионов Кюри. Естественные радиоактивные элементы присутствуют на нашей планете с момента ее возникновения (26 миллиардов лет назад) и повсеместно сопровождают человечество на всех этапах его становления, включая современную эпоху.
Человек всегда был подвержен действию естественной радиации. Он подвергается воздействию космического излучения. Радиоактивные вещества находятся в земле, в зданиях, в которых мы живем, а также в пище и воде, которые мы потребляем. Радиоактивные газы находятся в воздухе, которым мы дышим, а сам человек радиоактивен, т. к. в живой ткани присутствуют в следовых количествах радиоактивные вещества. Уровни этой естественной или «фоновой» радиации колеблются в значительных пределах.
РАДОН.
Наиболее весомым из всех естественных источников радиации (на территории России его вклад достигает 44%) является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) — радон. Человек подвергается воздействию радона и продуктов его распада в основном за счет внутреннего облучения при поступлении радионуклидов в организм через органы дыхания и, в меньшей мере, с продуктами питания.
В природе встречаются два изотопа радона: радон-222 (образуется при распаде урана-238) и радон-220 (один из продуктов в ряду распада тория-232). Оба изотопа излучают альфа-частицы, превращаясь в изотоп полония, которые, в свою очередь, тоже излучая альфа-частицы, дают начало следующим нуклидам (альфа- или бета - активным) и так далее — вплоть до стабильных изотопов свинца. Радона-222 в природе в 20 раз больше, чем радона-220, поэтому далее будет подразумеваться в основном первый из них.
Радон высвобождается из земной коры, однако основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении, причем радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Средняя равновесная концентрация радона внутри помещений составляет около 15 Бк/м3. В зонах с умеренным климатом концентрация радона в закрытых помещениях в среднем примерно в 8—10 раз выше, чем в наружном воздухе. Герметизация помещений с целью утепления только усугубляет дело, поскольку при этом еще более затрудняется выход радиоактивного газа из помещений. Поступая внутрь помещений тем или иным путем (просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкциях дома), радон накапливается в нем. В результате в помещении могут возникнуть довольно высокие уровни радиации, особенно если дом стоит на грунте с относительно повышенным содержанием радионуклидов или если при его постройке использовали материалы с повышенной радиоактивностью. В среднем человек получает 65—130 мбэр в год за счет внутреннего облучения радоном.Самые распространенные строительные материалы — дерево, кирпич и бетон — выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают, например, гранит и пемза, также используемые в качестве строительных материалов. Кальций-силикатный шлак также обладает, как выяснилось, довольно высокой удельной радиоактивностью. Среди других промышленных отходов с высокой радиоактивностью, применяющихся в строительстве, следует назвать кирпич из красной глины — отход производства алюминия, доменный шлак — отход черной металлургии, и зольную пыль, образующуюся при сжигании угля. (Таблица 1).