7 Выбор теплообменного оборудования
7.1 Выбор деаэраторов
Для дегазации питательной воды в паровой части котельной установлен деаэратор атмосферного типа. Производительность питательного деаэратора равна 14,79 кг/с (61,97 т/ч).
Деаэраторы типа ДА обеспечивают устойчивую деаэрацию воды при работе с нагрузками в пределах от 30 до 120% номинальной производительности. Деаэраторы типа ДА укомплектовываются индивидуальными охладителями выпара и могут быть поставлены без деаэраторного бака [3].
Для деаэрации питательной воды паровых котлов необходим один атмосферный деаэратор типа ДА-75-15
Краткая характеристика [3]:
1 Номинальная производительность 75 т/ч;
2 Номинальное рабочее давление 0,12 МПа;
3 Полезная емкость деаэраторного бака 15 м3.
Для деаэрации подпиточной воды (расход 519 кг/с=1868,1 т/ч) тепловых сетей необходимо четыре вакуумных деаэратора типа ДСВ-2000
Краткая характеристика [3]:
1 Номинальная производительность 2000 т/ч;
2 Номинальное рабочее давление 0,0075 МПа;
7.2 Выбор подогревателей
Выбор теплообменников следует производить, исходя из их расчетной площади теплообмена. При этом коэффициент теплопередачи ориентировочно можно принимать в пределах от 2500 до 3000 ккал/(м2ч0С) для подогревателей с латунными трубками при достаточной чистоте поверхностей нагрева.
С учетом загрязнения трубок слоем накипи коэффициент теплопередачи равен 1700 - 1800 ккал/(м2ч0С) [3].
Для ориентировочных расчетов поверхности нагрева всех теплообменных аппаратов принимаю коэффициент теплопередачи равным 2500 Вт/(0С м2).
Охладители выпара
Тепловые нагрузки на охладители выпара:
Среднелогарифмический температурный напор:
Поверхность теплообмена:
В качестве охладителей выпара для теплообменников №5 и №7 предлагаю установить следующие теплообменники: ОВА-2/0,22, ОВВ-2/0,22
Краткая характеристика охладителей выпара:
1 ОВА-2/0,22. Рабочее давление в корпусе/трубной системе 0,12/0,5 МПа, пробное давление 0,7 МПа, рабочая температура в корпусе/ в трубной системе 40-104/10-80єС, поверхность охладителя 2 м2, масса 220 г.
2 ОВВ-2/0,22. Рабочее давление в корпусе/трубной системе 0,01-0,12/0,4 МПа, пробное давление 0,7 МПа, рабочая температура в корпусе/ в трубной системе 104/50-80єС, поверхность охладителя 2 м2, масса 220 кг
Подогреватели исходной и химочищенной воды
Необходимо рассчитать площади теплообмена для следующих теплообменных аппаратов:
- охладитель продувочной воды (Т№1);
- подогреватель исходной воды (Т№2);
- подогреватель исходной воды (Т№4);
- подогреватель химочищенной воды после II ступени ХВО (Т№3);
- подогреватель химочищенной воды после I ступени ХВО (Т№6).
Таблица 8
Расчетнаявеличина | Расчетная формула или метод определения | Номер теплообменного аппарата | ||||||
1 | 2 | 3 | 4 | 6 | ||||
Тепловая нагрузка | Q | кВт | 764 | 3083 | 3083 | 237,1 | 3083 | |
Наибольшая разность температур теплоносителей | DtБ | 0С | 107 | 162,7 | 144 | 10 | 144 | |
Наименьшая разность температур теплоносителей | DtМ | 0С | 33,7 | 65 | 32,9 | 2,9 | 30 | |
Среднелогарифмический температурный напор | Dt | 0С | 63,5 | 106,6 | 75,3 | 5,7 | 72,8 | |
Коэффициент теплопередачи | k | Рекомендации [3] | 2500 | |||||
Поверхность теплообмена | F | м2 | 4,9 | 11,8 | 16,7 | 17 | 17,3 |
Для теплообменника Т№1 выбираю водяной подогреватель под номером 10 (таблица 2,144.[8]).
Краткая характеристика:
1 Площадь поверхности нагрева секции 6,9 м2.
2 Давление 1,6 МПа.
3 Число латунных трубок 37, Dн = 168 мм.
Для теплообменника Т№2 и Т№3 выбираю пароводяной подогреватель под номером 2 (таблица 2.143.[8]).
Краткая характеристика:
1 Площадь поверхности нагрева секции 17,2 м2.
2 Длина корпуса 3,63 мм.
3 Число латунных трубок 124, Dвч = 412 мм.
Для теплообменников Т№4 выбираю водо-водяной подогреватель под номером 14 (таблица 2.144.[8]).
Краткая характеристика:
1 Площадь поверхности нагрева секции 20,3 м2.
2 Давление 1,6 МПа.
3 Число латунных трубок 109, Dн = 273 мм.
Для теплообменника Т№6 выбираю пароводяной подогреватель под номером 3 (таблица 2.143.[8]).
Краткая характеристика:
1 Площадь поверхности нагрева секции 24,4 м2.
2 Длина корпуса 3,75 мм.
3 Число латунных трубок 176, Dвч = 466 мм.
Используемая литература
1. Соколов Е.А. Теплофикация и тепловые сети. – М.: Энергоиздат, 1982.
2. Есина И.В., Грибанов А.И. Источники и системы теплоснабжения промышленных предприятий. – Челябинск: ЧГТУ, 1990.
3. Бузников Е.Ф., Роддатис К.Ф., Берзиньш Э.Я. Производственные и отопительные котельные. – М.: Энергоатомиздат, 1984.
4. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара. Справочник. – М.: Энергоатомиздат, 1984.
5. Кириллов В.В. Лекции по курсу «Источники и системы теплоснабжения».
6. Тепловой расчет котельных агрегатов (нормативный метод). – М.: Энергия, 1973.
7. Григорьев В.А., Зорин В.М. Тепловые и атомные электрические станции. Справочник. – М.: Энергоатомиздат, 1989.
8. Смирнов А.Д., Антипов К.М. Справочная книжка энергетика. – М.: Энергоатомиздат, 1984.