Кавендиш измерил разницу между углами закручивания :
Гравитационное поле.
Гравитационное взаимодействие между тепами осуществляется посредством создаваемогогравитационного поля, называемого также полем тяготения. Силовой характеристикой поля служит егонапряженность:(вблизи поверхности Земли напряженность поля тяготения равна ускорениюсвободного падения)Энергетической характеристикой поля является потенциал:
(потенциальная энергияполя тяготения называется взятая с обратным знаком работа по перемещению тела на бесконечность).
5. Законы сохранения в нерелятивистской механике, их связь со свойствами симметрии пространства и времени. Законы сохранения энергии, импульса и момента импульса. Примеры их проявления
В механике сформулированы законы сохранения: закон сохранения импульса, закон сохранения энергии, закон сохранения момента импульса. Для некоторых систем их можно получить из законов Ньютона.
1) Закон сохранения импульса
p = mυ
p=∑mυ=const
Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени.
Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (он подчиняется законам квантовой механики). Этот закон носит универсальный характер, т. е. закон сохранения импульса – фундаментальный закон природы.
Закон сохранения импульса является следствием определенного свойства симметрии пространства – его однородности. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются; иными словами, не зависят от выбора положения начала координат ИСО.
Отметим, что импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю.
Второй закон Ньютона F=dp/dt. В замкнутой системе F=0, dp=0, p=const.
Импульс системы = произведению массы системы на скорость ее центра масс p=mVc.
Центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неизменным.
Примеры проявления закона сохранения импульса:
Отдача при стрельбе 0 = m1υ1+Mυ2
Реактивное движение (ракета движется в безвоздушном пространстве).
Абсолютно упругий удар
Абсолютно неупругий удар
Закон сохранения импульса для механических систем используется и действует при всех известных взаимодействиях, т. к. импульсом обладает и поле.
Закон сохранения момента импульса (количества движения)
r – радиус – вектор
Момент импульса твердого тела:
J – момент инерции
ω – угловая скорость
Направление определяется по оси вращения в сторону, определяемую правилом правого винта.
Это выражение еще одна форма уравнения вращательного движения твердого тела относительно неподвижной оси.
В замкнутой системе
. Следовательно, K = constЗакон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.
Закон сохранения момента импульса – фундаментальный закон природы. Он связан со свойством симметрии пространства – его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
Продемонстрировать закон сохранения момента импульса можно с помощью скамьи Жуковского. Пусть человек, сидящий на скамье, которая без трения вращается вокруг вертикальной оси, и держащий в вытянутых руках гантели, приведен во вращение с угловой скоростью ω1. Если человек прижмет гантели к себе, то момент инерции системы уменьшится. Поскольку момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω2 возрастает. Аналогично, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, чтобы уменьшить свой момент инерции и увеличить тем самым угловую скорость вращения.
Закон сохранения механической энергии – механическая энергия консервативной системы сохраняется постоянной в процессе движения системы:
E=W+P=const
Пример проявления:
Абсолютно упругий удар
Абсолютно неупругий
Из закона сохранения энергии вытекает однородность времени.
6. Свободные и вынужденные механические колебания. Резонанс, колебания при наличии трения. Механические волны
Колебаниями называют движение или процессы, которые характеризуются определенной повторяемостью во времени.
Свободные колебания – те колебания, которые совершаются за счёт первоначально сообщенной энергии при последующем отсутствии воздействия внешних сил на колебательную систему.
Гармонические колебании
x = Asin(ω0t+φ0)
ω0 – циклическая частота – число полных колебаний, которые совершаются за 2П единиц времени φ=2πν
T=2π/ω – период колебаний
Вынужденные механические колебания – колебания, возникающие под действием внешней периодически изменяющейся силы
x = Acos(ω0t+φ1)
В пружине
F = F0cosωt
Резонанс: явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте, равной или близкой собственной частоте колебательной системы
δ – коэффициент затухания
Колебания при наличии трения.
Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Свободные колебания реальных систем всегда затухают. Затухание свободных механических колебаний вызывается главным образом трением и возбуждением в окружающей среде упругих волн.
Упругими или механическими волнами называются механические возмущения (деформации), распространяющиеся в упругой среде. Тела, которые, воздействуя на среду, вызывают эти возмущения, называются источниками волн.Например, зрители в театре слышат речь и пение актеров, звучание музыкальных инструментов, благодаря доходящим до них колебаниям давления воздуха, вызываемых этими источниками звука.
В жидкостях и газах только продольные.
В твердых телах – поперечные и продольные.
Длина волны
Упругие волны в газах
В плотной среде
γ=cosnst для данного газа, R – газовая постоянная, T – абсолютная температура, μ – молярная масса, k – модуль объемной упругости, ρ – плотность среды.
7. Экспериментальные основы Специальной теории относительности. Постулаты Эйнштейна. Пространство, время и система отсчета в СТО
В конце 19 в. выяснилось, что выводы классической механики противоречат некоторым данным, в частности, при изучении движения быстрых заряженных частиц оказалось, что их движение не подчиняется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скорости их движения. Американский физик Майкельсон (1852 – 1913) в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838 – 1923) пытался обнаружить движение земли относительно эфира (эфирный ветер) – опыт Макельсона – Морли, применяя интерферометр, названный впоследствии интерферометром Майкельсона. Обнаружить эфирный ветер Майкельсону не удалось, как впрочем, не удалось обнаружить и в других многочисленных опытах. Опыты "упрямо" показывали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики. Одновременно было показано противоречие между классической теорией и уравнениями Дж. Максвелла, лежащими в основе понимания света как электромагнитной волны. Эйнштейн пришел к выводу о том, что мирового эфира – особой среды, которая могла бы быть принята в качестве абсолютной системы – не существует. Существование постоянной скорости распространения света в вакууме находилось в соответствии с уравнениями Максвелла.