Процесс ионизации в газе сопровождается обратным процессом рекомбинации. В электрическом поле убывание ионов будет происходить и за счет перемещения ионов полем к электродам. Условие равновесия:
Δni = Δnr + Δnj = r·n2+
. где Δn – число пар ионов, возникающих или исчезающих из единицы объема газа за единицу времени .В слабых полях плотность тока мала (Δnr >> Δnj), все носители заряда успевают рекомбинировать и
, т.е. выполняется закон Ома. В сильных полях все носители заряда участвуют в проводимости: Δnr << Δnj и плотность тока достигает максимально возможного значения j = jн – плотности тока насыщения.С некоторого значения напряженности E = Eкр, начинается резкое лавинообразное нарастание тока в газе.
Если порождаемые ионизацией электроны и ионы за время свободного пробега в сильном электрическом поле приобретают кинетическую энергию, достаточную для ионизации при столкновении следующей молекулы, то происходит лавинообразное нарастание разрядного тока – самостоятельный газовый разряд.
Электрический ток в жидких средах. Процессы прохождения электрического тока через жидкости имеют характерную особенность – они сопровождаются химическими процессами в жидкой среде. Вещества, химически разлагающиеся на составные части при протекании электрического тока, называются электролитами. Разложение электролита на его составные части под действием электрического тока называется электролизом. Растворы, проводящие ток с химическими преолбразованиями, называются проводниками второго рода. Кроме жидких растворов, к проводникам второго рода относятся также расплавленные металлы, ионные кристаллы, стекла.
При включении электрического поля в электролите возникает электрический ток, образованный положительными и отрицательными ионами. Однако эти ионы существуют в растворах независимо от электрического тока: растворенные молекулы распадаются (диссоциируют) на заряженные части под влиянием процессов, происходящих в самом электролите. Это происходит из-за того, что молекулы электролита окружены полярными молекулами растворителя – сольватация (в случае воды гидратация), и сила взаимного притяжения ионов в молекуле уменьшится в ε раз. В результате теплового движения молекула может распасться на ионы – электролитическая диссоциация.
Во внешнем электрическом поле на беспорядочное тепловое движение накладывается упорядоченное встречное движение ионов, и в растворе возникает перенос зарядов в определенном направлении, то есть возникает электрический ток. Явление сольватации приводит к тому, что в электрическом поле движутся ионы, окруженные сольватными оболочками. Учитывая, что электрический ток в электролите создается катионами и анионами, можно определить его плотность в виде
(α – коэффициент диссоциации; концентрации ионов одинаковы, а заряды ионов по абсолютной величине равны) – для электролитов выполняется закон Ома. С повышением температуры электропроводность электролитов растет, так как возрастают и коэффициент диссоциации, и подвижности ионов.Электропроводность электролитов зависит от концентрации раствора сложным образом. С ростом концентрации n0 произведениеαn0 вначале растет (практически все молекулы диссоциированы, α ≈ 1, и преобладает влияние роста концентрации молекул растворенного электролита), а затем начинает уменьшаться (когда преобладает влияние уменьшения α→ 0). В больших полях начинаются заметные отклонения от закона Ома.
Электрический ток в твердом теле. Существование свободных электронов в металлах связано с тем, что при образовании кристаллической решетки от атомов отделяются наиболее слабо связанные (валентные) электроны, которые становятся общей, "коллективной" собственностью всего вещества или тела. В идеальной решетке электроны не испытывали бы никакого сопротивления, и электропроводность металлов была бы бесконечно большой. Реальная кристаллическая решетка всегда содержит нарушения периодичности, связанные с наличием инородных – примесных атомов или вакансий (отсутствие атома в узле), а также с тепловыми колебаниями решетки.
Для металла ρ = ρтк + ρпр, где ρтк – удельное сопротивление, обусловленное тепловыми колебаниями ионов кристаллической решетки, ρпр – удельное сопротивление, обусловленное примесными атомами. Сопротивление ρтк уменьшается с понижением температуры и обращается в нуль при Т = 0, оно обуславливает зависимость ρ ~ T. ρпр при небольшой концентрации примесей не зависит от температуры – остаточное удельное сопротивление металла (при 0 К).
В полупроводниках валентная зона полностью заполнена при температуре абсолютного нуля, а ширина запрещенной зоны невелика. Электрическое поле не может перебросить электроны из валентной зоны в свободную зону проводимости, поэтому полупроводник ведет себя как диэлектрик. В результате теплового движения часть электронов переходит из валентной зоны в зону проводимости, и электрическое поле получает возможность менять энергетическое состояние электронов как в зоне проводимости, так и в валентной зоне.
Плотность тока
.Электропроводность полупроводников
, т.е. экспоненциально растет с температурой.21. Магнитное поле, характеристики магнитного поля. Энергия магнитного поля
На движущиеся заряды, кроме электростатических (кулоновских) сил действуют силы, определяемые магнитным полем – магнитные силы. Это обусловлено релятивистскими свойствами пространства-времени. Полная сила взаимодействия движущихся зарядов складывается из кулоновской силы
и магнитной силы , причем .Магнитная сила является величиной второго порядка малости по отношению v/c к кулоновской силе. Следовательно, магнитное взаимодействие сравнимо по величине с электростатическим лишь при больших скоростях движения зарядов.
Магнитное взаимодействие осуществляется через поле, называемое магнитным. Движущиеся заряды (токи) изменяют свойства окружающего их пространства – создают в нем магнитное поле. В отличие от электростатического, оно не действует на покоящийся заряд. Проявляется магнитное поле в том, что на движущиеся в нем заряды (токи) действуют магнитные силы.
Способность магнитного поля вызывать появление магнитной силы, действующей на какой-либо элемент тока, можно количественно описать, задавая в каждой точке поля некоторую векторную величину
, которая носит название магнитной индукции.Тогда магнитная сила, действующая на элемент тока
, может быть представлена в виде: .(Это соотношение и определяет магнитную индукцию). Направление магнитной силы определяется направлением векторного произведения векторов элемента тока и магнитной индукции.
Магнитная индукция является основной силовой характеристикой магнитного поля.
Для магнитного поля, как и для электростатического, справедлив принцип суперпозиции: если имеется несколько токов (движущихся зарядов), то магнитная индукция результирующего поля равна векторной сумме магнитных индукций полей, содаваемых каждым из токов (движущихся зарядов):
.Отсюда следует, что принцип суперпозиции справедлив и для элементов тока. Поэтому магнитную индукцию, создаваемую каким-либо контуром с током. можно найти, суммируя магнитные индукции от отдельных элементов тока на которые можно разбить данный контур.
Магнитные поля, создаваемые постоянными электрическими токами, подчиняются закону Био–Савара–Лапласа:
,где
- радиус-вектор точки, в которой элемент тока создает магнитное поле индукцией .