Смекни!
smekni.com

Проектирование электрической сети 110 кВ (стр. 11 из 20)

За расчётную принимаем зимнюю нагрузку Sз=79,9 кВА. Учитывая то, что на подстанции нет постоянного дежурства, запишем:

Sт

Sрасч= 79,9 кВА.

Выберем по [13] трансформатор марки ТСЗ – 160/10 (трёхфазный двухобмоточный с естественным воздушным охлаждением при защищённом исполнении). Паспортные данные трансформатора указаны в таблице.

Таблица 16.3 – Паспортные данные ТСН

Тип трансформатора Sном, кВ·А Напряжение обмотки Потери, Вт
, %
, %
ВН НН Рх Рк
ТСЗ – 160/10 160 10 0,4 700 2700 5,5 4

Определим нагрузку трансформаторов в аварийном режиме:

кВА.

Загрузка трансформаторов в аварийном режиме:


к

(16.5)

где n – число ТСН, к =1,15

1,2 – допустимая нагрузка в длительном режиме.

к=

=0,94<1,15,

Следовательно, перегрузки не будет.

Согласно [17] на данной подстанции примем оперативный постоянный ток. На подстанции с постоянным оперативным током ТСН присоединяется к шинам РУ–10 кВ. В цепях ТСН до 250 кВА на стороне 10 кВ устанавливаются предохранители. На стороне 380/220 В ТСН работают раздельно, каждый на свою секцию с АВР на секционной связи.

Согласно сведениям, приведённым выше, выберем следующую схему питания собственных нужд.


16.5 Расчёт токов короткого замыкания

Короткие замыкания являются одной из основных причин нарушения нормального режима работы электроустановок и энергосистем в целом. При проектировании подстанции расчёт токов к.з. производится с целью проверки выбранного электрооборудования. При расчёте токов к.з. принимают ряд допущений, не вносящих существенных погрешностей в расчёты. К ним относятся:

1) отсутствие качаний генераторов;

2) линейность всех элементов схемы (не учитывается насыщение магнитных систем);

3) приближённый учёт нагрузок (все нагрузки представляются в виде постоянных по величине индуктивных сопротивлений);

4) пренебрежение активными сопротивлениями элементов схемы при расчёте токов к. з. и учёт активных сопротивлений только при определении степени затухания апериодических составляющих токов к. з.;

5) пренебрежение распределённой ёмкостью линий, за исключением случаев длинных линий и линий в сетях с малым током замыкания на землю;

6) симметричность всех элементов системы, за исключением места короткого замыкания;

7) пренебрежение током намагничивания трансформаторов.


Рисунок 16.4 – Схема замещения подстанции

Рассчитаем все сопротивления в относительных единицах. Примем Sб=1000 МВ·А,

,
.

Сопротивление системы С определяют по формуле:

(16.6)

где Sн,с – мощность системы в относительных единицах;

xн,с* - сопротивление системы в относительных единицах.

.

Сопротивление линий электропередачи определяют по формуле:


, (16.7)

где l – длина линии, км;

x0 – удельное сопротивление ЛЭП, Ом/км;

– напряжение ЛЭП, взятое по ряду средних напряжений, ближайшее к напряжению в точке короткого замыкания, кВ.

;

.

Сопротивления обмоток трансформаторов на высокой стороне

Сопротивления расщеплённых обмоток трансформаторов на низкой стороне определяют по формуле:

(16.8)

где

, Uк% – каталожные данные трансформатора ТДТН-25000/110.

.

Рассчитаем ток короткого замыкания в точке k1.

Результирующее сопротивление до точки к.з.:

Периодическая составляющая тока короткого замыкания в момент короткого замыкания рассчитывают по формуле:

(16.9)

.

Определяем ударный ток

, (16.10)

где kу =1,608 – ударный коэффициент по [17].

Апериодическая составляющая тока короткого замыкания в момент разведения контактов выключателя определяют по формуле:

, (16.11)

где τ=0,1с – время разведения контактов выключателя;

Та=0,02с – постоянная времени по [17].

.

Периодическая составляющая тока короткого замыкания в момент размыкания контактов выключателя равна:

т.к. система С является источником бесконечной мощности.

Рассчитаем результирующее сопротивление схемы при коротком замыкании в точке k2 для двух случаев.

а) Включённый выключатель QB

Рассчитаем результирующее сопротивление. Исходя из того, что сопротивления расщеплённых обмоток низкого напряжения трансформаторов равны, имеем следующее выражение

б) Выключенный выключатель QB

Результирующее сопротивление для данного случая:

Вычисленные данные составляющих тока короткого замыкания для всех точек сводим в таблицу 16.4.

Таблица 16.4 – Составляющие тока короткого замыкания

Точка к.з
, кА
ίу, кА ίа,τ, кА Iп,τ, кА
1)
(шины 110кВ)
0,83 6,04 13,73 0,057 6,04
2)
(шины 10 кВ) а) При включенном QB б) При выключенном QB
2,93 5,03 18,78 10,94 48,33 28,16 3,58 2,08 18,38 10,94

16.6 Выбор выключателей и разъединителей

Выключатель является основным коммутационным аппаратом в электрических установках, он служит для отключения и включения цепи в любых режимах.

К выключателям высокого напряжения предъявляются следующие требования:

1) надёжное отключение токов любой величины от десятков ампер до номинального тока отключения;

2) быстрота действия, т.е. наименьшее время отключения;

3) пригодность для автоматического повторного включения, т.е. быстрое включение выключателя сразу же после отключения;

4) возможность пофазного (пополюсного) управления для выключателей 110кВ и выше;

5) удобство ревизии и осмотра контактов и механической части;

6) взрыво- и пожаробезопасность;

7) удобство транспортировки и обслуживания.

В учебном проектировании выключатели выбирается по цепи самого мощного присоединения. Мощность ЛЭП принимается равной пропускной способности линии. Мощность в цепях обмоток трансформаторов равна перетокам мощности через трансформатор.

Согласно [17], выключатели выбираются по следующим условиям:

(16.12)

(16.13)

(16.14)