5. ВЫВОДЫ
В результате проделанной лабораторной работы мы определили момент инерции I0 физического маятника относительно оси, проходящей через центр масс, и момент инерции относительно оси, не проходящий через центр его масс и проверили справедливость теоремы Штейнера на примере физического маятника.
6. Контрольные вопросы.
6.1 Как формулируется понятия инерции материальной точки и твёрдого тела?
Внутреннее свойство тел сохранять состояние своего движения в отсутствии сил и реагировать на их действия изменением состояния движения, сопротивляясь этим изменениям, называют, в общем случае, инерционностью.
Количественной мерой воздействия на тело в каждый момент времени, изменяющего состояние его поступательного движения, является сила F. Равенство силы нулю означает неизменность состояния тела – движения или покоя. Протяженное во времени воздействие оценивается как произведение силы на время её действия F∆t, называют эту меру действия импульсом силы.
Импульс силы и сила – причинные динамические характеристики по отношению к объекту их приложения. Импульс переменной во времени силы, приходящийся на бесконечно малый интервал времени dt, есть дифференциал импульса силы Fdt. Равенство нулю дифференциала предполагает постоянство импульса тела: при неизменной массе тела вектор скорости его поступательного движения и сонаправленный с ним вектор импульса будут оставаться неизменными по величине и направлению (F= 0, mv = const).
История формирования понятий динамики твёрдого тела такова, что между характеристиками поступательного движения материальной точки и вращательного движения твёрдого тела имеет место определённая аналогия, вытекающая из общности материалистических представлений о причинах и следствиях. Так, центральное понятие динамики материальной точки действие (воздействие, взаимодействие), описываемое силой F и импульсом силы F∆t, в динамике твёрдого тела дополнилось характеристиками: моментом силы M – мерой мгновенного (текущего) действия – и импульсом момента силы M∆t – мерой протяжённого во времени действия. Момент силы, или вращательный момент, определяется как векторное произведение действующей на тело силы и радиус-вектора точки приложения этой силы относительно какой-либо выбранной (выделенной) точки: M = r * F, M = r*F*sin(r, F).
Действуя на тело продолжительное время, вращательный момент обуславливает изменение состояния движения тела. По аналогии с теорией движения материальной точки, в которой импульс силы, как причинный фактор, обуславливает следствие – приращения импульса тела, равное импульсу силы, - в динамике твёрдого тела импульс момента силы вызывает изменение момента импульса тела L (M*dt = dL).
6.2 В каких ситуациях применима теорема Штейнера?
Если известен момент инерции тела относительно любой оси, проходящей через центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера. Суть, которой состоит в применении формулы:
I = I0 + ml2,
где l – расстояние между осью симметрии тела и осью вращения,
m – масса тела,
I0 – момент инерции тела относительно оси симметрии.
6.3Как формулируется теорема Штейнера?
Момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела и произведения массы тела m на квадрат расстояния l между осями:
I = I0 +ml2.
6.4 Под действием какой силы совершается колебательное движение маятника?
Колебательные движения физического маятника совершаются под действием силы тяжести около неподвижной горизонтальной оси, не проходящей через его центр тяжести. Силу тяжести P = mg можно разложить на две составляющие, одна из которых P2 уравновешивается реакцией подвеса. Под действием другой P1 маятник приходит в движение. На основании второго закона Ньютона для динамики вращательного движения запишем:
M = I ε = -P1l,
где M – момент вращающей силы;
ε – угловое ускорение.
Модуль составляющей силы P1 = P sinφ. Знак «минус» выбран потому, что действующая сила направлена в сторону, противоположную положительному направлению отклонения маятника.
6.5 Является ли момент инерции аддитивной величиной?
Момент импульса твёрдого тела складывается из моментов импульса составляющих его материальных точек, т.е. момент импульса – аддитивная величина. Момент импульса материальной точки относительно произвольной точки пространства называют векторное произведение радиус-вектора материальной точки в системе отсчёта выбранной точки:
Li = [ri * pi] = mi [ri * vi].
6.6 Объяснить метод определения момента инерции с помощью физического маятника.
В основе определения момента инерции тел с помощью физического маятника лежит экспериментальная проверка справедливости теоремы Штейнера. Зная ускорение свободного падения g, массу m, экспериментально измерив длину l и определив период T можно вычислить момент инерции маятника. Зависимость I=f(l), как следует из выражения I = I0 +ml2нелинейная и график зависимости представляет собой возрастающую кривую, по виду которой нельзя утверждать о проверяемой зависимости.
Единственным графиком по виду, которого можно однозначно судить о характере исследуемой зависимости, является прямая линия, поэтому используем метод линеаризации. В данном случае такими переменными являются I и l2, следовательно, для проверки построим график I=f(l2), при этом на него нанесём экспериментальные точки и доверительные интервалы. Через экспериментальные точки и доверительные интервалы (рис. 4.1) проводим прямую линию, т.е. экспериментальная зависимость [I=f(l2)] момента инерции твёрдого тела от квадрата расстояния от оси вращения до центра масс является линейной, значит, правильность соотношения I = I0 +ml2 подтверждена экспериментально.
Используя график линеаризованной зависимости I=f(l2) можно вычислить массу стержня и собственный момент инерции, а также сравнить результаты расчёта и опыта.
Для этого сравним наше уравнение с уравнением прямой
I = I0 +ml2
y = b = ax,
где а – угловой коэффициент,
b – отрезок, отсекаемый прямой на оси y.
Угловой коэффициент определяется как
а =∆y/∆x,
где ∆x – приращение аргумента,