Название | Масса | Заряд |
Электрон | 1 | -1 |
Мюон | 206,7 | -1 |
Тау-лептон | 3492,0 | -1 |
Электронное нейтрино | 0 | 0 |
Мюонное нейтрино | 0 | 0 |
Тау-нейтрино | 0 | 0 |
2.4. Адроны.
Если лептонов существует чуть свыше десятка, то адронов сотни. Такое множество адронов наводит на мысль, что адроны не элементарные частицы, а построены из более мелких частиц. Все адроны встречаются в двух разновидностях — электрически заряженные и нейтральные. Среди адронов наиболее известны и широко распространены нейтрон и протон, которые в свою очередь относятся к классу нуклонов. Остальные адроны короткоживущие и быстро распадаются. Адроны участвуют во всех фундаментальных взаимодействиях. Они делятся на барионы и мезоны. К барионам относятся нуклоны и гипероны.
Для объяснения существования ядерных сил взаимодействия между нуклонами квантовая теория требовала существования особых элементарных частиц с массой больше массы электрона, но меньше массы протона. Эти предсказанные квантовой теорией частицы позже были названы мезонами. Мезоны были обнаружены экспериментально. Их оказалось целое семейство. Все они оказались короткоживущими нестабильными частицами, живущими в сободном состоянии миллиардные доли секунды. Например, заряженный пи-мезон или пион, имеет массу покоя 273 электронных массы и время жизни:
t = 2.6*10^(-8) с.
Далее при исследованиях на ускорителях заряженных частиц были обнаружены частицы с массами, превосходящими массу протона. Эти частицы были названы гиперонами. Их обнаружилось даже больше, чем мезонов. К семейству гиперонов относятся: лямбда-, сигма-, кси- и омега-минус-гипероны.
Существование и свойства большинства известных адронов были установлены в опытах на ускорителях. Открытие множества разнообразных адронов в 50-60-x годах крайне озадачило физиков. Но со временем адроны удалось классифицировать по массе, заряду и спину. Постепенно стала выстраиваться более или менее четкая картина. Появились конкретные идеи о том, как систематизировать хаос эмпирических данных, раскрыть тайну адронов в научной теории. Решающий шаг здесь был сделан в 1963 году, когда была предложена теория кварков.
2.5. Теория кварков.
Теория кварков — это теория строения адронов. Основная идея этой теории очень проста. Все адроны построены из более мелких частиц, называемых кварками. Значит, кварки — это более элементарные частицы, чем адроны. Кварки являются гипотетическими частицами, т.к. не наблюдались в свободном состоянии. Барионный заряд кварков равен 1/3. Они несут дробный электрический заряд: они обладают зарядом, величина которого составляет либо -1/3 или +2/3 фундаментальной единицы — заряда электрона. Комбинация из двух и трех кварков может иметь суммарный заряд, равный нулю или единице. Все кварки имеют спин Ѕ, поэтому они относятся к фермионам. Основоположники теории кварков Гелл-Манн и Цвейг, чтобы учесть все известные в 60-е годы адроны ввели три сорта (цвета) кварков: u (от up — верхний), d (от down — нижний) и s (от strange — странный).
Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк — антикварк. Из трех кварков состоят сравнительно тяжелые частицы — барионы. Наиболее известны из барионов нейтрон и протон. Более легкие пары кварк — антикварк образуют частицы, получившие название мезоны — "промежуточные частицы". Например, протон состоит из двух u-кварков и одного d-кварков (uud), а нейтрон - из двух d-кварков и одного u-кварка (udd). Чтобы это "трио" кварков не распадалось, необходима удерживающая их сила, некий "клей".
Оказалось, что результирующее взаимодействие между нейтронами и протонами в ядре представляет собой просто остаточный эффект более мощного взаимодействия между самими кварками. Это объяснило, почему сильное взаимодействие кажется столь сложным. Когда протон "прилипает" к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть сил тратится на прочное склеивание трио кварков, а небольшая - на скрепление двух трио кварков друг с другом. Но позднее выяснилось, что кварки участвуют и в слабом взаимодействии. Слабое взаимодействие может изменять цвет кварка. Именно так происходит распад нейтрона. Один из d-кварков в нейтроне превращается в u-кварк, а избыток заряда уносит рождающийся одновременно электрон. Аналогичным образом, изменяя аромат, слабое взаимодействие приводит к распаду и других адронов.
То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, стало триумфом теории кварков. Но в 70-е годы были открыты новые адроны (пси-частицы, ипсилон-мезон и др.). Этим был нанесен удар первому варианту теории кварков, поскольку в ней уже не было места ни для одной новой частицы. Все возможные комбинации из кварков и их антикварков были уже исчерпаны.
Проблему удалось решить за счет введения трех новых цветов. Они получили название — с - кварк (charm — очарование), b - кварк (от bottom — дно, а чаще beauty — красота, или прелесть), и впоследствии был введен еще один цвет — t ( от top — верхний).
До настоящего времени кварки и антикварки в свободном виде не наблюдались. Однако сомнений в реальности их существования практически не осталось. Более того, ведутся поиски следующих за кварками «настоящих» элементарных частиц — глюонов, которые являются носителями взаимодействий между кварками, т.к. кварки скрепляются между собой сильным взаимодействием, а глюоны (цветовые заряды) являются переносчиками сильного взаимодействия. Область физики элементарных частиц, изучающая взаимодействие кварков и глюонов, носит название квантовой хромодинамики . Как квантовая электродинамика — теория электромагнитного взаимодействия, так квантовая хромодинамика — теория сильного взаимодействия. Квантовая хромодинамика — квантовополевая теория сильного взаимодействия кварков и глюонов, которое осуществляется путем обмена между ними — глюонами (аналогами фотонов в квантовой электродинамике). В отличие от фотонов, глюоны взаимодействуют друг с другом, что приводит, в частности, к росту силы взаимодействия между кварками и глюонами при удалении их друг от друга. Предполагается, что именно это свойство определяет короткодействие ядерных сил и отсутствие в природе свободных кварков и глюонов.
По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из 3 кварков, мезоны — из кварка и антикварка.
Хотя и существует некоторая неудовлетворенность кварковой схемой, большинство физиков считает кварки подлинно элементарными частицами — точечными, неделимыми и не обладающими внутренней структурой. В этом отношении они напоминают лептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь.
Таким образом, наиболее вероятное число истинно элементарных частиц (не считая переносчиков фундаментальных взаимодействий) на конец ХХ века равно 48. Из них: лептонов (6х2) = 12 и кварков (6х3)х2 =36.
2.6. Частицы - переносчики взаимодействий.
Перечень известных частиц не исчерпывается перечисленными частицами — лептонами и адронами, которые образуют строительный материал вещества. В этот перечень не включен, например, фотон. Есть также еще один тип частиц, которые не являются непосредственно строительным материалом материи, а обеспечивают все четыре фундаментальных взаимодействия, т.е. образуют своего рода "клей", не позволяющий миру распадаться на части. Такие частицы называются переносчиками взаимодействий, причем отдельный вид частиц переносит свои взаимодействия.
Переносчиком электромагнитного взаимодействия между заряженными частицами выступает фотон. Фотон — квант электромагнитного излучения, нейтральная частица с нулевой массой. Спин фотона равен 1.
Теория электромагнитного взаимодействия была представлена квантовой электродинамикой.
Переносчики сильного взаимодействия — глюоны. Это гипотетические электрически нейтральные частицы с нулевой массой и спином 1. Подобно кваркам, глюоны обладают квантовой характеристикой «цвет». Глюоны — переносчики взаимодействия между кварками, т.к. связывают их попарно или тройками.
Переносчики слабого взаимодействия три частицы — W+, W- и Z° бозоны. Они были открыты лишь в 1983 г. Радиус слабого взаимодействия чрезвычайно мал, поэтому его переносчиками должны быть частицы с большими массами покоя. В соответствии с принципом неопределенности время жизни частиц с такой большой массой покоя должно быть чрезвычайно коротким — всего лишь около 10n сек (где n = -26 ). Радиус переносимого этими частицами взаимодействия очень мал потому, что столь короткоживущие частицы не успевают отойти особенно далеко.
Высказывается мнение, что возможно существование и переносчика гравитационного поля — гравитона (в тех теориях гравитации, которые рассматривают ее не (только) как следствие искривления пространства-времени, а как поле). Теоретически, гравитон — квант гравитационного поля, имеющий нулевую массу покоя, нулевой электрический заряд и спин 2. В принципе гравитоны можно зафиксировать в эксперименте. Но поскольку гравитационное взаимодействие очень слабое и в квантовых процессах практически не проявляется, то непосредственно зафиксировать гравитоны очень сложно, и пока это не удалось ни одному ученому.